首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A series of eight commercial C-4 substituted 1,4-dihydropyridines and other synthesized related compounds were tested for direct potential scavenger effect towards alkylperoxyl radicals and ABTS radical cation in aqueous Britton-Robinson buffer pH7.4. A direct quenching radical species was established. The tested 1,4-dihydropyridines were 8.3-fold more reactive towards alkylperoxyl radicals than ABTS cation radical, expressed by their corresponding kinetic rate constants. Furthermore, NPD a photolyte of nifedipine and the C-4 unsubstituted 1,4-DHP were the most reactive derivatives towards alkylperoxyl radicals. The pyridine derivative was confirmed by GC/MS technique as the final product of reaction. In consequence, the reduction of alkylperoxyl and ABTS radicals by 1,4-dihydropyridines involved an electron transfer process. Also, the participation of the hydrogen of the 1-position appears as relevant on the reactivity. Results of reactivity were compared with Trolox.  相似文献   

2.
Antioxidant properties of melatonin: a pulse radiolysis study   总被引:5,自引:0,他引:5  
Various one-electron oxidants such as OH*, tert-BuO*, CCl3OO*, Br2*- and N3*, generated pulse radiolytically in aqueous solutions at pH 7, were scavenged by melatonin to form two main absorption bands with lambda(max) = 335 nm and 500 nm. The assignment of the spectra and determination of extinction coefficients of the transients have been reported. Rate constants for the formation of these species ranged from 0.6-12.5x10(9) dm3 mol(-1) s(-1). These transients decayed by second order, as observed in the case of Br2*- and N3* radical reactions. Both the NO2* and NO* radicals react with the substrate with k = 0.37x10(7) and 3x10(7) dm3 mol(-1) s(-1), respectively. At pH approximately 2.5, the protonated form of the transient is formed due to the reaction of Br2*- radical with melatonin, pKa ( MelH* <=> Mel* + H+) = 4.7+/-0.1. Reduction potential of the couple (Mel*/MelH), determined both by cyclic voltammetric and pulse-radiolytic techniques, gave a value E(1)7 = 0.95+/-0.02 V vs. NHE. Repair of guanosine radical and regeneration of melatonin radicals by ascorbate and urate ions at pH 7 have been reported. Reactions of the reducing radicals e(aq)- and H* atoms with melatonin have been shown to occur at near diffusion rates.  相似文献   

3.
DNA与红细胞膜脂质过氧化相互作用研究   总被引:2,自引:2,他引:0  
研究了DNA与红细胞膜脂质过氧化产物的相互作用。与无DNA的反应体系相比,DNA的加入明显增加440nm处的荧光强度,这种效应是由于DNA与过氧红细胞膜生成了新的荧光物质,其激发波长315nm,发射波长410nm.维生素E强烈抑制荧光产物的形成。DNA经分离、纯化后用EB作荧光探针研究表明,DNA二级结构发生了改变,DNA—EB复合物荧光光谱,DNA—EB复合物之间的能量转移效率均有明显变化。同时证实DNA损伤具有碱基特异性,即主要是鸟嘌呤受到损伤。  相似文献   

4.
This work reports the electrochemical oxidation of three newly synthesized C4-hydroxyphenyl-substituted 1,4-dihydropyridine derivatives in dimethylsulfoxide. The reactivity of the compounds with ABAP-derived alkylperoxyl radicals in aqueous buffer pH 7.4, was also studied. The oxidation mechanism involves the formation of the unstable dihydropyridyl radical, which was confirmed by controlled-potential electrolysis (CPE) and ESR experiments. The final product of the CPE, that is, pyridine derivative, was identified by GC-MS technique for the three derivatives. A direct reactivity of the synthesized compounds toward ABAP-derived alkylperoxyl radicals was found. The pyridine derivative was identified by GC-MS as the final product of the reaction. Results reveal that this type of 1,4-DHPs significantly reacts with the radicals, even compared with commercial 1,4-DHP drugs with a well-known antioxidant ability.  相似文献   

5.
The absorption and fluorescence spectra of dimethyloxyluciferin (DMOL) and monomethyloxyluciferin (MMOL) were studied at pH 3.0-12.0. In the range of pH 3.0-8.0, the fluorescence spectrum of DMOL exhibits a maximum at lambda(em) = 639 nm. At higher pH values an additional emission maximum appears at lambda(em) = 500 nm (wavelength of excitation maximum lambda(ex) = 350 nm), which intensity increases with time. It is shown that this peak corresponds to the product of DMOL decomposition at pH > 8.0. The absorption spectra of MMOL were studied in the range of pH 6.0-9.0. At pH 8.0-9.0, the absorption spectrum of MMOL exhibits one peak at lambda(abs) = 440 nm. At pH 7.3-7.7, an additional band appears with maximum at lambda(abs) = 390 nm. At pH 6.0-7.0 two maxima are observed, at lambda(abs) = 375 and 440 nm. The fluorescence spectra of MMOL (pH 6.0-9.7, lambda(ex) = 440 or 375 nm) exhibit one maximum. It is shown that decomposition of DMOL and MMOL in aqueous solutions results in products of similar structure. DMOL and MMOL are rather stable at the pH optimum of luciferase. It is suggested that they can be used as fluorescent markers for investigation of the active site of the enzyme.  相似文献   

6.
The interaction of dietary carotenoids with radical species   总被引:4,自引:0,他引:4  
Dietary carotenoids react with a wide range of radicals such as CCl3O2*, RSO2*, NO2*, and various arylperoxyl radicals via electron transfer producing the radical cation of the carotenoid. Less strongly oxidizing radicals, such as alkylperoxyl radicals, can lead to hydrogen atom transfer generating the neutral carotene radical. Other processes can also arise such as adduct formation with sulphur-centered radicals. The oxidation potentials have been established, showing that, in Triton X-100 micelles, lycopene is the easiest carotenoid to oxidize to its radical cation and astaxanthin is the most difficult. The interaction of carotenoids and carotenoid radicals with other antioxidants is of importance with respect to anti- and possibly pro-oxidative reactions of carotenoids. In polar environments the vitamin E (alpha-tocopherol) radical cation is deprotonated (TOH*+ --> TO* + H+) and TO* does not react with carotenoids, whereas in nonpolar environments such as hexane, TOH*+ is converted to TOH by hydrocarbon carotenoids. However, the nature of the reaction between the tocopherol and various carotenoids shows a marked variation depending on the specific tocopherol homologue. The radical cations of the carotenoids all react with vitamin C so as to "repair" the carotenoid.  相似文献   

7.
α-Tocopherol was reacted with an alkylperoxyl radical at 37°C in benzene. 2,2′-Azobis(2,4- dimethylvaleronitrile) was used to generate the alkylperoxyl radicals. The reaction products of α- tocopherol were isolated by reverse-phase and normal-phase high performance liquid chromatography, and their structures were characterized. They were four stereoisomers of 8a-(l-cyano-l,3- dimethyl)butylperoxy-α-tocopherone, spirodiene dimer and two geometrical isomers of the trimer. When α-tocopherol at a low concentration was reacted with AMVN, the major products were 8a- alkylperoxy-α-tocopherones. On the other hand, the products of the alkylperoxyl radical with α- tocopherol at a high concentration were spirodiene dimer and trimer in addition to the 8a-alkylperoxy- α-tocopherones.  相似文献   

8.
Solutions of tryptophan and N-hydroxypyridine-2-thione (mercaptopyridine-N-oxide, MPNO) were irradiated at 335nm. Formation of 5-hydroxytryptophan was inferred from increased fluorescence at 334nm on excitation at 315nm, conditions chosen for selective detection of 5-hydroxytryptophan. Such experiments are complicated by overlapping absorption spectra in the region of 300-350nm. Similar solutions were exposed to multiphoton excitation at 750nm using 180fs pulses from a titanium:sapphire laser. In solutions containing both tryptophan and MPNO strong emission at 500nm was observed that was absent in solutions containing either MPNO or tryptophan only. This emission is ascribed to the characteristic fluorescence ('hyperluminescence') from 5-hydroxyindoles resulting from multiphoton photochemistry. The conclusion that MPNO generates hydroxyl radicals by 2-photon activation at 750nm is confirmed by the scavenging effects of ethanol and kinetic analysis of the results. This method has potential applications in intracellular induction of oxidative stress using multiphoton near-infrared illumination, a technology that is gaining momentum as a research tool.  相似文献   

9.
Treatment of the porcine intestinal brush-border membranes with 100 microM ascorbic acid and 10 microM Fe2+ in the presence of various concentrations of tert-butyl hydroperoxide (t-BuOOH) resulted in a marked fluorescence development at 430 nm, depending on the hydroperoxide concentration. This fluorescence formation was closely related to lipid peroxidation of the membranes as assessed by formation of conjugated diene. However there is no linear relation between thiobarbituric acid-reactive substances (TBARS) and fluorescence formation. On the other hand, fluorescence formation in the membranes by treatment with ascorbic acid/Fe2+ or t-BuOOH alone was negligible. The results with antioxidants and radical scavengers suggest that ascorbic acid/Fe2+/t-BuOOH-induced lipid peroxidation of the membranes is mainly due to t-butoxyl and/or t-butyl peroxy radicals. Most TBARS produced during the peroxidation reaction were released from the membranes, but fluorescent products remained in the membrane components. The fluorescence properties of products formed by lipid peroxidation of the membranes were compared with those of products derived from the interaction of malondialdehyde (MDA) or acetaldehyde with the membranes. The fluorescence products in the acetaldehyde-modified membranes also exhibited the emission maximum at 430 nm, while the emission maximum of MDA-modified membranes was 470 nm. The fluorescence intensity of MDA-modified membranes was markedly decreased by treatment with 10 mM NaBH4 but that of the peroxidized or acetaldehyde-modified membranes was enhanced by about two-fold with the treatment. In addition, a pH dependence profile revealed that the fluorescence intensity of the peroxidized or acetaldehyde-modified membranes decreases with increasing pH of the medium, whereas that of MDA-modified ones did not change over the pH range from 5.4 to 8.0. On the basis of these results, the fluorescence properties of products formed in the intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

10.
P Braun  B M Greenberg  A Scherz 《Biochemistry》1990,29(45):10376-10387
A D1-D2-cyt b559 complex with about four attached chlorophylls and two pheophytins has been isolated from photosystem II of the aquatic plant Spirodela oligorrhiza and used for studying the detergent-induced changes in spectroscopic properties and photochemical activity. Spectral analyses (absorption, CD, and fluorescence) of D1-D2-cyt b559 preparations that were incubated with different concentrations of the detergent Triton X-100 indicate two forms of the D1-D2-cyt b559 complexes. One of them is photochemically active and has an absorption maximum at 676 nm, weak fluorescence at 685 nm, and a strong CD signal. The other is photochemically inactive, with an absorption maximum at 670 nm, strong fluorescence at 679 nm, and much weaker CD. The relative concentrations of the two forms determine the overall spectra of the D1-D2-cyt b559 preparation and can be deduced from the wavelength of the lowest energy absorption band: preparations having maximum absorption at 674, 672, or 670.5 nm have approximately 20, 60, or 85% inactive complexes. The active form contains two chlorophylls with maximum absorption at 679 nm and CD signals at 679 (+) and 669 nm (-). These chlorophylls make a special pair that is identified as the primary electron donor P-680. The calculated separation between the centers of these two pigments (using an extended version of the exciton theory) is about 10 A, the pigments' molecular planes are tilted by about 20 degrees, and their N1-N3 axes are rotated by 150 degrees relative to each other. The other two chlorophylls and one of the two pheophytins in the D1-D2-cyt b559 complex have their maximum absorption at 672 nm, while the maximum absorption of the photochemically active pheophytin is probably at 672-676 nm. During incubation with Triton X-100, the photochemically active complex is transformed into an inactive form with first-order kinetics. In the inactive form the maximum absorption of the 679 nm absorbing Chls is blue-shifted to 669 nm. The first-order decay of the photochemical activity suggests that the isolated D1-D2-cyt b559 complex is stable as an aggregate but becomes unstable on dissociation into individual D1-D2-cyt b559 units.  相似文献   

11.
trans-Resveratrol (trans-3,5,4'-trihydroxystilbene) is a nonflavonoid polyphenol reported to exert different biological activities, among them inhibition of the lipid peroxidation, scavenging of the free radicals, inhibition of the platelet aggregation, and anticancer activity as the most important. In order to enlighten the radical-scavenging mechanism of trans-resveratrol, stationary gamma-radiolytic experiments in liposomes and pulse radiolytic experiments in aqueous solutions were performed. Applying the stationary gamma-radiolysis together with the subsequent product analysis, reactions of lipid peroxyl radicals, LOO*, with trans-resveratrol and other natural antioxidants were investigated. It was found that trans-resveratrol was a better radical scavenger than vitamins E and C but similar to the flavonoids epicatechin and quercetin. The comparison of the radical-scavenging effects of trans-resveratrol and its analogues trans-4-hydroxystilbene and trans-3,5-dihydroxystilbene revealed that trans-resveratrol and trans-4-hydroxystilbene showed almost the same effect and were more efficient than trans-3,5-dihydroxystilbene. These findings indicate greater radical-scavenging activity of trans-resveratrols para-hydroxyl group than its meta-hydroxyl groups. Using the pulse radiolysis, reactions of trans-resveratrol and its analogues with trichloromethylperoxyl radicals, CCl(3)OO*, were studied. Spectral and kinetic properties of the observed transients showed great similarity between trans-resveratrol and trans-4-hydroxystilbene which seems to confirm that para-hydroxyl group of trans-resveratrol scavenges free radicals more effectively than its meta-hydroxyl groups.  相似文献   

12.
Cleavage of pyrogallol by non-heme iron-containing dioxygenases   总被引:6,自引:0,他引:6  
Both intradiol and proximal extradiol dioxygenases are thought to produce the same product, alpha-hydroxymuconic acid, when pyrogallol (3-hydroxycatechol) is used as a substrate. However, when these enzymes were reacted with pyrogallol, they gave different products. A proximal extradiol dioxygenase, metapyrocatechase (catechol:oxygen 2,3-d-oxidoreductase (decyclizing), EC 1.13.11.2), gave a product having an absorption maximum at 290 nm, which was gradually converted to a more stable compound having an absorption maximum at 239 nm. On the other hand, an intradiol dioxygenase, protocatechuate 3,4-dioxygenase (protocatechuate:oxygen 3,4-oxidoreductase (decyclizing), EC 1.13.11.3), gave a product having an absorption maximum at 300 nm. Based on the spectral data and direct comparison with authentic samples, the primary products obtained by the action of the former and the latter enzymes were identified as alpha-hydroxymuconic acid and 2-pyrone-6-carboxylic acid, respectively. While another intradiol dioxygenase, pyrocatechase (catechol:oxygen 1,2-oxidoreductase (decyclizing), EC 1.13.11.1), gave a mixture of nearly equimolar amounts of these two compounds. Isotope labeling experiments indicated that 1 atom of oxygen was incorporated in 2-pyrone-6-carboxylic acid from the atmosphere. Based on these findings, the reaction mechanism for the formation of 2-pyrone-6-carboxylic acid is discussed. This may be the first experimental evidence indicating the presence of a seven-membered lactone intermediate during the oxygenative cleavage of catechols, proposed by Hamilton (Hamilton, G.A. (1974) in Molecular Mechanisms of Oxygen Activation (Hayaishi, O., ed) pp. 405-451, Academic Press, New York).  相似文献   

13.
亚油酸体系脂质过氧化引起的DNA损伤研究   总被引:5,自引:3,他引:2  
用含两个双键的不饱和脂肪酸-亚油酸作为模型化合物,分析其过氧化程度,同时检测了由于脂质过氧化而引起的DNA损伤,结果表明:在脂质过氧化过程中,DNA与亚油酸过氧化产物反应生成一种荧光物质、其最大激发波长315nm最大发射波长410nm并随着氧化时间增加而增加,与此同时,双链DNA百分含量明显下降,DNA-溴乙锭复合物荧光显著降低,反映了DNA二级结构受到破坏.上述结果揭示了脂质过氧化产物在自由基引起DNA的损伤中可能起重要作用  相似文献   

14.
Fluorescence spectros copy and light scattering have been used to investigate the physicochemical behaviour of protoporphyrin IX in aqueous solutions. In the alkaline range large micelles are formed with a hydrodynamic radius of 130 nm and a molecular mass of 5.0 x 10(7) Da. The micelles are fluorescent with an emission maximum at 620 nm. A pH lowering caused quenching of the micelle fluorescence. On a collision encounter these micelles will disintegrate and they are reformed by nucleation of collision fragments. From measurements of the fluorescence intensity of the micelles versus total concentration an equilibrium constant of 4.0 x 10(6) M(-1) was found for this collision-nucleation process. In the pH range between 6 and 3 another micelle type of twice the size of those in the alkaline range was stable with respect to the solute. These micelles have free base porphyrin fluorescence with an emission maximum at 634 nm. A lowering of the pH below unity causes disintegration of these micelles and monomer fluorescence from the protoporphyrin dication was observed.  相似文献   

15.
Fluorescence and absorption spectra were used to study the temperature effect on theconformation of bacteriorhodopsin (bR) in the blue and purple membranes (termed as bRb and bRprespectively).The maximum emission wavelengths of tryptophan fluorescence in both proteins at roomtemperature are 340 nm,and the fluorescence quantum yield of bRb is about 1.4 fold higher than that of bRp.As temperature increases,the tryptophan fluorescence of bRb decreases,while the tryptophan fluorescenceof bRp increases.The binding study of extrinsic fluorescent probe bis-ANS indicated that the probe can bindonly to bRb,but not to bRp.These results suggest that significant structural difference existed between bRband bRp.It was also found that both kinds of bR are highly thermal stable.The maximum wavelength of theprotein fluorescence emission only shifted from 340 nm to 346 nm at 100℃.More interestingly,as tempera-ture increased,the characteristic absorption peak of bRb at 605 nm decreased and a new absorption peak at380 nm formed.The transition occurred at a narrow temperature range (65℃-70℃).These facts indicatedthat an intermediate can be induced by high temperature.This phenomenon has not been reported before.  相似文献   

16.
The regulation of oxyradicals and PSII activity by UV-B (280-315 nm) and UV-A (315-400 nm) components were investigated in the leaves of maize [Zea mays L. var: HQPM.1]. The impact of ambient UV radiation on the production of superoxide (O2-) and hydroxyl (.OH) radicals were analysed in the leaves of 20-day-old plants. The amount of O2.- and .OH radicals and the radical scavenging activity were significantly higher in the leaves exposed to ambient UV radiation as compared to the leaves of the plants grown under UV exclusion filters. Smaller amount of oxyradicals in the leaves of UV excluded plants was accompanied by a substantial increase in quantum yield of electron transport (phi Eo), rate of electron transport (psi o) and performance index (PIABS), as indicated by chlorophyll a fluorescence transient. Although higher amounts of oxyradicals invoked higher activity of antioxidant enzymes like superoxide dismutase and peroxidase under ambient UV, they also imposed limitation on the photosynthetic efficiency of PSII. Exclusion of UV components (UV-B 280-315 nm; UV-A 315-400 nm) translated to enhanced photosynthesis, growth and biomass. Thus, solar UV components, especially in the tropical region, could be a major limiting factor in the photosynthetic efficiency of the crop plants.  相似文献   

17.
Retinyl acetate suppressed the free radical-induced oxidation of methyl linoleate. Retinyl acetate was reacted with an alkylperoxyl radical in two solvent systems, methanol and benzene. The alkylperoxyl radical was generated by the thermal decomposition of a free radical initiator, 2,2′-azobis(2,4-dimethylvaleronitrile), at 37°C. The reaction products were isolated by HPLC and their structures were identified. The main product in methanol was 14-hydroxy-13-methoxyretinyl acetate in addition to some minor products. The reaction in benzene gave some products with low yields. They were 5,6-epoxyretinyl acetate, 11,14-epoxyretinyl acetate, and 5,6,11,14-diepoxyretinyl acetate. The results indicate that retinyl acetate is capable of scavenging peroxyl radicals by its conjugated polyene structure.  相似文献   

18.
Photoaddition of chlorpromazine to DNA   总被引:2,自引:0,他引:2  
Chlorpromazine, 2-chloro-N-(3-dimethylaminopropyl)phenothiazine (CPZ), is a frequently prescribed antipsychotic drug that causes cutaneous photosensitivity in man. CPZ is also phototoxic and photomutagenic in vitro. We have investigated the photoaddition of CPZ to DNA as a possible mechanism for these photobiologic effects. Prior to irradiation, CPZ binds non-covalently to double-stranded calf thymus DNA. At high nucleotide to CPZ ratios, the CPZ absorption maximum shifts from 305 nm to 340 nm with an isosbestic point at 323 nm and 90% of the CPZ fluorescence at 455 nm is quenched. The excitation and emission spectra for the unquenchable fluorescence are the same as those for unbound CPZ. The absorption and fluorescence spectra of unbound CPZ are restored at 0.1 mM magnesium acetate or 100 mM sodium acetate. Non-covalent binding of CPZ to heat-denatured DNA does not shift the CPZ absorption spectrum but quenches 65% of the CPZ fluorescence. Photolytic decomposition of CPZ was inhibited by binding to DNA. In the presence of high concentrations of double-stranded DNA or denatured DNA the photolysis rates were reduced by greater than 98% and 65%, respectively, compared to free CPZ. Formation of covalent photoadducts between CPZ and denatured DNA was 10-fold more efficient than photoadduct formation with double-stranded DNA. Approximately 10% of the CPZ which photodecomposed upon irradiation at 323 nm photoadded to denatured DNA. These results indicate that formation of a complex between CPZ and double-stranded DNA absorbing at 340 nm protects CPZ from photodecomposition and inhibits covalent photoadduct formation.  相似文献   

19.
Cellular retinoic acid-binding protein (CRABP) has been purified to homogeneity from human placenta by a series of procedures, including acetone powder extraction, gel filtration on Sephadex G-50, and ion-exchange chromatography on DEAE-cellulose and on SP-Sephadex. Cellular retinol-binding protein (CRBP) was isolated concurrently. CRABP was purified 75,400-fold, based on total soluble acetone powder extract of placenta. The protein is a single polypeptide chain with a molecular mass of 14,600 Da, estimated by sodium dodecyl sulfate (SDS) gel electrophoresis or gel filtration, and has an isoelectric point of 4.78 (apo-CRABP, 4.82). On analysis of absorption and fluorescence spectra, the protein was seen to exhibit an absorption peak at 350 nm, fluorescence excitation maxima at 350 and 370 nm, and a fluorescence emission maximum at 475 nm. Human CRABP was immunologically distinct from human CRBP and serum retinol-binding protein.  相似文献   

20.
In this article, we developed a new and mild procedure for the isolation of chlorosomes from a green sulfur bacterium Chlorobaculum tepidum. In this procedure, Fenna-Matthews-Olson (FMO) protein was released by long cold treatment (6°C) of cells under the presence of a chaotrope (2?M NaSCN) and 0.6?M sucrose. Chlorosomes were released by an osmotic shock of the cold-treated cells after the formation of spheroplasts without mechanical disruption. Chlorosomes were finally purified by a sucrose step-wise density gradient centrifugation. We obtained two samples with different density (20 and 23% sucrose band, respectively) and compared them by SDS-PAGE, absorption spectroscopy at 80?K, fluorescence and CD spectroscopy at room temperature. Cells whose absorption maximum was longer than 750?nm yielded higher amount of the 20% sucrose fraction than those having an absorption maximum shorter than 750?nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号