首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied castrated adult muskoxen fed a standard diet of grass hay and supplement throughout the year to determine seasonal changes in digesta passage, fill, and fermentation without the confounding effects of reproductive demands or changes in food quality. Although food intake increased by 74% between spring and autumn, mean retention times of fluid and particulate digesta markers were maintained between seasons in both the rumen (9-13 h) and the intestines (27-37 h). The rumen contained 84.5% of digesta and accounted for 79% of dry matter digestion in the whole digestive tract. Ruminal fluid space and whole-gut digesta fill increased by 31%-34%, while ruminal rates of in situ degradation increased by more than 100% between spring and autumn for cellulose and hemicellulose. Hyperphagia in autumn was accompanied by increased bacterial counts in ruminal fluid (30%), declines in ruminal pH, and increases in the concentration of fermentation acids (16%) when compared with spring hypophagia. Consumption of fresh hay and supplement increased the concentrations of acids most markedly during winter and spring when bacterial counts were low. Low food intakes in winter and spring may limit the microbial population, whereas hyperphagia in autumn may foster a much more active microflora that requires consistent supplies of substrate. Plasticity of fill and fermentation in muskoxen minimizes winter costs and maximizes nutrients and energy gained from coarse forages in small home ranges throughout the year.  相似文献   

2.
The hypothalamic melanocortin system--the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)--is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment.  相似文献   

3.
This paper reviews the nutritional ecology, the digestive physiology, and biochemistry of herbivorous land crabs and the adaptations that they possess towards a diet of plant material. Land crab species that breathe air and forage out of water can be divided into three feeding specialisations: primarily carnivorous, deposit feeders feeding on micro-organisms and organic matter in the sediment, and herbivores consuming mainly plant material and its detritus. The last forms the focus of this review. The diets of the herbivores are low in nitrogen and high in carbon, are difficult to digest since they contain cellulose and hemicellulose, and may disrupt digestion due to the presence of tannins. Herbivorous crustaceans are able to efficiently utilise plant material as their primary nutrient source and are indeed able to meet their nitrogen requirements from it. Herbivorous land crabs display a range of adaptations towards a low nitrogen intake and these are discussed in this review. They also appear to endogenously produce cellulase and hemicellulase enzymes for the digestion of cellulose and hemicellulose. Generalised and specific adaptations allow them to inhibit the potentially negative digestive effects of tannins. To digest plant material, they possess a plastic digestive strategy of high food intake, short retention time, high assimilation of cell contents, and substantial digestion of cellulose and hemicellulose.  相似文献   

4.
Primate field studies often identify “lean seasons,” when preferred foods are scarce, and lower‐quality, abundant foods (fallback foods) are consumed. Here, we quantify the nutritional implications of these terms for two diademed sifaka groups (Propithecus diadema) in Madagascar, using detailed feeding observations and chemical analyses of foods. In particular, we sought to understand 1) how macronutrient and energy intakes vary seasonally, including whether these intakes respond in similar or divergent ways; 2) how the amount of food ingested varies seasonally (including whether changes in amount eaten may compensate for altered food quality); and 3) correlations between these variables and the degree of frugivory. In the lean season, sifakas shifted to non‐fruit foods (leaves and flowers), which tended to be high in protein while low in other macronutrients and energy, but the average composition of the most used foods in each season was similar. They also showed dramatic decreases in feeding time, food ingested, and consequently, daily intake of macronutrients and energy. The degree of frugivory in the daily diet was a strong positive predictor of feeding time, amount ingested and all macronutrient and energy intakes, though season had an independent effect. These results suggest that factors restricting how much food can be eaten (e.g., handling time, availability, or intrinsic characteristics like fiber and plant secondary metabolites) can be more important than the nutritional composition of foods themselves in determining nutritional outcomes—a finding with relevance for understanding seasonal changes in behavior, life history strategies, competitive regimes, and conservation planning. Am J Phys Anthropol 153:78–91, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The gastrointestinal tracts (GIT) of fish and other vertebrates are challenged with a diversity of functional demands caused by changes and differences in dietary inputs and environmental conditions. This contribution reviews how hormonal regulation plays an essential role in modulating the GIT functions of fish to match changes in functional demands. Exemplary is how hormones produced by the GIT, the associated organs (e.g., pancreas), and other sources (e.g., hypothalamus, adrenal cortex, thyroid, gonads) modulate the digestive processes (motility, secretion, and nutrient absorption) in response to dietary inputs. Hormones regulate the other GIT functions of osmoregulation (secretion and absorption of electrolytes and water), immunity, endocrine secretions, metabolism, and the elimination of toxic metabolites and environmental contaminants to match changes in environmental conditions and physiological states. Although the regulatory molecules and associated signaling pathways have been conserved during evolution of the vertebrate GIT, the specific responses often vary among fish with different feeding habits and from different environments, and can differ from those described for mammals.  相似文献   

6.
A comparison of digestive efficiency in birds of prey   总被引:3,自引:0,他引:3  
Differences in how raptors hunt and what they catch are correlated with size-independent differences in length of the small intestine, the region of the digestive tract responsible for food absorption. The study examined the functional significance of these differences among ten raptor species. Dry matter apparent digestive efficiency was calculated for each species fed a diet of day-old cockerels. For Falconiformes and Strigiformes, efficiencies varied between 75% and 82%, digestive efficiency being positively correlated with intestine length.
Generalist species, with a wide prey spectrum and feeding on relatively easily caught prey and carrion, had long intestines and high digestive efficiencies. Raptors specializing on fast-moving, avian prey had short intestines and reduced digestive efficiency. The Peregrine Falco peregrinus and the Common Buzzard Buteo buteo were used as examples of specialist and generalist feeders, respectively. Rabbit and pigeon were fed to both. Buzzards digested both diets more efficiently than Peregrines. Body-mass changes were used to examine the nutritional value of the two diets to each species. Buzzards gained body-mass when eating rabbit, Peregrines lost mass. Both species gained mass when feeding on pigeon. It seems that consideration of diet quality, not just quantity, is essential in understanding raptor food requirements. Generalist raptors have high efficiencies on several diets, specialists compensate for their reduced efficiency by eating food of high nutritional quality. Various aspects of prey quality are examined.  相似文献   

7.
In this study we examined differences in feeding behevior of populations of the marine temperate herbivorous fish Aplodactylus punctatus, in three different localities off the Chilean coast, which differ qualitatively and quantitatively in food availability. We test whether food selection follows optimal foraging strategics, whether there is any modification of the fishes' digestive tracts in relation to their diets, and whether differences in diet quality affect the allocation of energy into reproduction and maintenance in these populations. Samples of this fish and of the understore algal assemblages were taken seasonally from May 1989 to February 1990. For each population we analyzed dietary composition, weight of the digestive tract and of the food content, the condition factor (K), and the gonadosomatic index (GSI). Our results showed that the diet observed in the three populations closely resembled the differences in macro-algal abundance and composition among the three localities studied. Local differences in diet quality were inversely related to the amount of food consumption and size of the digestive tract, suggesting that under differential conditions of food availability A. punctatus is able to compensate for variations in food quality through a flexibility in its digestive strategies. The nutritional status (K) of individuals, and their reproductive pattern (GSI) were directly related to diet quality. These results indicate that although A. punctatus is able to adjust its digestive processes to different algal food regimes, the digestive modifications observed in food-poor environments are not sufficient to compensate for the lack of food and allow fish to reach the nutritional status and reproductive output reached in a food-rich environment. This study represents the first natural experiment demonstrating a direct relationship among food availability, feeding patterns, digestive processes, and reproductive effort.  相似文献   

8.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

9.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

10.
为考察营养状态和代谢范围对鱼类群体行为的影响,研究以锦鲫(Carassius auratus)幼鱼为实验对象,在(25.4±0.2)℃条件下先测定其摄食代谢和能量代谢(标准代谢率, SMR;最大代谢率, MMR)计算代谢范围(AS=MMR–SMR),再测定5个“营养-AS”处理组的锦鲫鱼群体中的个体空间位置、摄食量及个体特征(如个体游泳速度和加速度)和群体特征(如个体游泳速度同步性、个体间距离、最近邻距离和群体极性)。研究发现:营养状态、饥饿、代谢范围、摄食和消化对鱼群中的个体空间位置均无影响。饥饿和消化对锦鲫群体的凝聚力并无影响,但饥饿降低该种鱼群体协调性的现象仅在消化期间存在,即群体中个体食物获取能力导致消化策略并非相同,由此引发个体游泳运动同步性更加紊乱,最终导致群体协调性下降。在正常营养状态的锦鲫群体中,群体前部的空间可赋予个体获得更多食物资源的生态收益,但饥饿消除该群体中个体空间分布生态收益的异质性。对照组摄食量与摄食水平与预测剩余的AS呈负相关,饥饿组摄食量与摄食水平与预测剩余的AS不相关。研究表明:在正常营养状态的锦鲫群体中,群体前部的空间可赋予个体获得更多食物资源的生态...  相似文献   

11.
ALEJANDRO GRAJAL 《Ibis》1995,137(3):383-388
The Hoatzin Opisthocomus hoazin is the only known bird with a well-developed foregut plant fermentation system; most fermentation takes place in the crop and caudal oesophagus. To test Hoatzin digestive efficiency, balance (total collection) trials with captive Hoatzins were made using two experimental diets of different composition and fibre content. Dry matter (DM) intakes were similar for the diets (mean = 62.8 g DM/kg body mass/ day). Average DM, organic matter and nitrogen digestibilities were not significantly different between diets, with average values of 72.9%, 75.0% and 78.3%, respectively. In vitro organic matter digestibilities by cow ruminal inoculum were very similar to organic matter digestibilities in live Hoatzins for both diets. Fibre digestibility was among the highest recorded for herbivorous birds. Cellulose and acid detergent fibre digestibilities were 58.8% and 52.7%, respectively. Neutral detergent fibre (NDF) digestibility differed among diets—the higher the NDF content of the diet, the higher the NDF digestibility. The NDF digestibilities were 37.9% and 70.9% for the two diets with NDF concentrations of 32.4% and 37.3%, respectively. Differences in NDF digestibility can be attributed to the different concentrations of hemicellulose in the experimental diets. The high overall digestibility by captive Hoatzins is higher than values previously reported for other avian herbivores but similar to those of foregut-fermenting mammals on similar diets. The unique digestive strategy of the Hoatzin maximizes digestion of cell wall and cell contents. The high digestive efficiency in the Hoatzin is not predicted by allometric models of fibre digestion as a function of body mass. Other nutritional benefits, such as detoxification of plant secondary compounds and microbial synthesis of essential amino acids and vitamins, may explain the evolution of foregut fermentation in this avian folivore.  相似文献   

12.
The “cost‐benefit” hypothesis states that avian body organs show mass changes consistent with the trade‐off between their functional importance and maintenance cost, which may vary throughout the annual cycle. Flightless moulting common scoter Melanitta nigra in Danish marine waters select rich undisturbed offshore feeding areas lacking predators, suggesting active feeding during moult. We tested four predictions relating to organ size during flightlessness in moulting male common scoter under this hypothesis. Namely that (i) pectoral muscles would show atrophy followed by hypertrophy, but that there would be no change in (ii) leg muscles and heart (the locomotory architecture required to sustain diving for food), (iii) digestive organs and liver (required to process food), or (iv) fat deposits (because birds could fulfil daily energy requirements from locally abundant food resources). Dissection of scoters collected at different stages during wing moult south of the Danish island of Læsø provided data on organ size that were consistent with these predictions. Pectoral muscle mass showed a c.23% atrophy during the middle of the flightless period relative to that at the end of moult. There was no significant loss in leg muscle, heart, digestive organs (except gizzard mass), liver, fat reserves or body mass with remigial growth. These findings are consistent with the hypothesis that common scoter moult in a rich feeding area, and rely on their diet to meet the nutritional requirements of remigial moult. These results differ in detail from those of a similar study of terrestrial feeding moulting greylag geese Anser anser, but because of the widely differing ecology of the species concerned, both sets of findings provide strong support for the hypothesis that variations in phenotypic plasticity in size of fat stores, locomotor and digestive organs can be interpreted as evolutionary adaptations to meet the conflicting needs (feather growth, nutritional challenges and predator avoidance) of the flightless moult period in different Anatidae species.  相似文献   

13.
Mammals maintain specific body temperatures (Tb) across a broad range of ambient temperatures. The energy required for thermoregulation ultimately comes from the diet, and so what animals eat is inextricably linked to thermoregulation. Endothermic herbivores must balance energy requirements and expenditure with complicated thermoregulatory challenges from changing thermal, nutritional and toxicological environments. In this review we provide evidence that plant‐based diets can influence thermoregulation beyond the control of herbivores, and that this can render them susceptible to heat stress. Notably, herbivorous diets often require specialised digestive systems, are imbalanced, and contain plant secondary metabolites (PSMs). PSMs in particular are able to interfere with the physiological processes responsible for thermoregulation, for example by uncoupling mitochondrial oxidative phosphorylation, binding to thermoreceptors, or because the pathways required to detoxify PSMs are thermogenic. It is likely, therefore, that increased ambient temperatures due to climate change may have greater and more‐specific impacts on herbivores than on other mammals, and that managing internal and external heat loads under these conditions could drive changes in feeding ecology.  相似文献   

14.
Three digestion trials were conducted to quantify aspects of digestive physiology in the Yunnan snub-nosed monkey Rhinopithecus bieti, a foregut fermenter that feeds primarily on lichens. Mean retention time (MRT, the average time plastic markers spent in the animal) had a mean estimate of 47 hr (n = 3) with high variability between trials (standard deviation = 17 hr). Recently captured animals, presumably with gut flora and digestive physiology close to wild animals, had a longer retention time than did long-term captives, although lack of standardization across trials (such as in activity level) confounds analysis. Apparent digestibilities for dry matter (71-80%) were in line with other studies of colobine digestion, but fall below those of ruminant ungulates feeding on lichens. Fecal analysis accurately determined the relative proportions of leaves vs. lichens in diets; mature leaves and lichens were not nutritional equivalents but appeared to be physiological equivalents in terms of digest passage. Fecal analysis does not, however, accurately determine the relative proportions of food types with different digestibilities, such as fruit vs. leaves.  相似文献   

15.
We review digestion and osmoregulation in the avian gut, with an emphasis on the ways these different functions might interact to support or constrain each other and the ways they support the functioning of the whole animal in its natural environment. Differences between birds and other vertebrates are highlighted because these differences may make birds excellent models for study and may suggest interesting directions for future research. At a given body size birds, compared with mammals, tend to eat more food but have less small intestine and retain food in their gastrointestinal tract (GIT) for shorter periods of time, despite generally higher mass‐specific energy demands. On most foods, however, they are not less efficient at digestion, which begs the question how they compensate. Intestinal tissue‐specific rates of enzymatic breakdown of substrates and rates of active transport do not appear higher in birds than in mammals, nor is there a demonstrated difference in the extent to which those rates can be modulated during acclimation to different feeding regimes (e.g. diet, relative intake level). One compensation appears to be more extensive reliance on passive nutrient absorption by the paracellular pathway, because the avian species studied so far exceed the mammalian species by a factor of at least two‐ to threefold in this regard. Undigested residues reach the hindgut, but there is little evidence that most wild birds recover microbial metabolites of nutritional significance (essential amino acids and vitamins) by re‐ingestion of faeces, in contrast to many hindgut fermenting mammals and possibly poultry. In birds, there is some evidence for hindgut capacity to breakdown either microbial protein or protein that escapes the small intestine intact, freeing up essential amino acids, and there is considerable evidence for an amino acid absorptive capacity in the hindgut of both avian and mammalian hindgut fermenters. Birds, unlike mammals, do not excrete hyperosmotic urine (i.e. more than five times plasma osmotic concentration). Urine is mixed with digesta rather than directly eliminated, and so the avian gut plays a relatively more important role in water and salt regulation than in mammals. Responses to dehydration and high‐ and low‐salt loads are reviewed. Intestinal absorption of ingested water is modulated to help achieve water balance in one species studied (a nectar‐feeding sunbird), the first demonstration of this in any terrestrial vertebrate. In many wild avian species the size and digestive capacity of the GIT is increased or decreased by as much as 50% in response to nutritional challenges such as hyperphagia, food restriction or fasting. The coincident impacts of these changes on osmoregulatory or immune function of the gut are poorly understood.  相似文献   

16.
Abstract.  Phenotypic flexibility in food selection and digestive efficiency in response is examined in relation to variations in food quality in a detritivorous species of Mediterranean ecosystems, the woodlouse Porcellio laevis Latreille (Isopoda: Oniscidea). It is hypothesized that diet selection should show a positive correlation between diet quality and digestive efficiency. The studied plants are isocaloric but exhibit significant differences in terms of nitrogen, carbon and fibre content. The observations appear to support the hypothesis that these isopods show compensatory feeding behaviour when feeding on poor diets. Contrary to expectation, a dietary effect on relative growth rate is not observed. It is concluded that behavioural skills associated with diet selection and physiological flexibility may allow P. laevis to satisfy and maintain equivalent nutritional levels during exposure to different diet qualities. In general, it appears that physiological flexibility plays an important role in determining nutritional balance in P. laevis , which can be of great benefit in the highly seasonal environment that it inhabits.  相似文献   

17.
Organisms have diverse adaptations for balancing dietary nutrients, but often face trade‐offs between ingesting nutrients and toxins in food. While extremely omnivorous cockroaches would seem excluded from such dietary trade‐offs, German cockroaches (Blattella germanica) in multiple populations have rapidly evolved a unique dietary specialization – an aversion to glucose, the phagostimulant in toxic baits used for pest control. We used factorial feeding experiments within the geometric framework to test whether glucose‐averse (GA) cockroaches with limited access to this critical metabolic fuel have compensatory behavioural and physiological strategies for meeting nutritional requirements. GA cockroaches had severely constrained intake, fat and N mass, and performance on glucose‐based diets relative to wild‐type (WT) cockroaches and did not appear to exhibit digestive strategies for retaining undereaten nutrients. However, a GA × WT ‘hybrid’ had lower glucose aversion than GA and greater access to macronutrients within glucose‐based diets – while still having lower intake and survival than WT. Given these intermediate foraging constraints, hybrids may be a reservoir for this maladaptive trait in the absence of positive selection and may account for the rapid evolution of this trait following bait application.  相似文献   

18.
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.  相似文献   

19.
Digestive enzyme responsiveness to feeding and associated adjustments of metabolism can be used to derive nutritionally effective diet formulations. Juvenile pintado (Pseudoplatystoma corruscans) were fed different diets. After feeding, fish were killed and blood, liver and white muscle were collected to evaluate metabolites. Stomach along with anterior, middle and posterior intestine were sampled for enzyme analysis. Non-specific protease, trypsin, chymotrypsin, amylase and lipase were assayed. Crude protein (CP) did not induce proteolytic activity; highest protease activities were observed in the stomach. Amylase was higher in the stomach in fish feeding on diets containing 13-25% starch. Lipase activity was observed along the gastrointestinal tract, with the highest activities observed in the middle section. The metabolic profile of white muscle was not affected by CP. In contrast, some plasma and liver metabolites were altered concomitant with changes in the digestive enzymes. Amino acid catabolism was increased. Digestion in pintado was responsive to cornstarch, reflected in intermediary metabolism; proteolytic activities of the digestive tract seem to be sufficient to deal with large amounts of dietary protein. As a result, we are able to recommend a balance between protein and energetic compounds, such as lipids and carbohydrates, in the diet to optimize fish growth.  相似文献   

20.
This study tested the spatial variations in the digestive/intestine tract length of Capoeta banarescui, with regard to their diets in different habitats. Highly varied diets observed in a previous study within the same river system posed the question whether this flexibility is reflected in the digestive tract and intestine length of the species in the Ye?il?rmak River, Turkey. Totals of 382 specimens (standard length 4.6–19.1 cm) were captured by electro‐fishing along the river in September 2012 at 11 locations spanning elevations from 34 to 992 m. The stomach, intestine and total digestive tract lengths were measured, and stomach contents analysed from 196 specimens. For statistical analyses, the stomach, intestine and total digestive tract length were expressed as percentages of total weight and standard length. The data provided evidence that the digestive tract and intestine lengths varied significantly among locations in association with the diet. Fish having dominantly carnivorous diets (e.g. chironomid larvae/invertebrates) in two locations had significantly shorter intestines and digestive tracts than those with diets dominated by benthic algae and other plants. The data indicated that C. banarescui showed broad flexibility in their feeding habits. Feeding heavily on plant materials might lead to the development of longer digestive tracts, increasing the active surface area for digestion; alternatively, there may be less invested in development of the digestive tract when feeding primarily on carnivorous diets where the respective digestive enzymes are readily available. The data suggest that phenotypic plasticity in the digestive tract length of C. banarescui is associated more with the abundant protein‐rich carnivorous food sources in the studied habitats. Whether this digestive tract plasticity has a genetic background remains to be verified in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号