首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperoxia is a popular model of oxidative stress. However, hyperoxic gas mixtures are routinely used for chemical denervation of peripheral O2 receptors in in vivo studies of respiratory control. The underlying assumption whenever using hyperoxia is that there are no direct effects of molecular O2 and reactive O2 species (ROS) on brain stem function. In addition, control superfusates used routinely for in vitro studies of neurons in brain slices are, in fact, hyperoxic. Again, the assumption is that there are no direct effects of O2 and ROS on neuronal activity. Research contradicts this assumption by demonstrating that O2 has central effects on the brain stem respiratory centers and several effects on neurons in respiratory control areas; these need to be considered whenever hyperoxia is used. This mini-review summarizes the long-recognized, but seldom acknowledged, paradox of respiratory control known as hyperoxic hyperventilation. Several proposed mechanisms are discussed, including the recent hypothesis that hyperoxic hyperventilation is initiated by increased production of ROS during hyperoxia, which directly stimulates central CO2 chemoreceptors in the solitary complex. Hyperoxic hyperventilation may provide clues into the fundamental role of redox signaling and ROS in central control of breathing; moreover, oxidative stress may play a role in respiratory control dysfunction. The practical implications of brain stem O2 and ROS sensitivity are also considered relative to the present uses of hyperoxia in respiratory control research in humans, animals, and brain stem tissues. Recommendations for future research are also proposed.  相似文献   

2.
The essential role of carotid body chemoreceptors in sleep apnea   总被引:4,自引:0,他引:4  
Sleep apnea is attributable, in part, to an unstable ventilatory control system and specifically to a narrowed "CO2 reserve" (i.e., the difference in P(a)CO2 between eupnea and the apneic threshold). Findings from sleeping animal preparations with denervated carotid chemoreceptors or vascularly isolated, perfused carotid chemoreceptors demonstrate the critical importance of peripheral chemoreceptors to the ventilatory responses to dynamic changes in P(a)CO2. Specifically, (i) carotid body denervation prevented the apnea and periodic breathing that normally follow transient ventilatory overshoots; (ii) the CO2 reserve for peripheral chemoreceptors was about one half that for brain chemoreceptors; and (iii) hypocapnia isolated to the carotid chemoreceptors caused hypoventilation that persisted over time despite a concomitant, progressive brain respiratory acidosis. Observations in both humans and animals are cited to demonstrate the marked plasticity of the CO2 reserve and, therefore, the propensity for apneas and periodic breathing, in response to changing background ventilatory stimuli.  相似文献   

3.
Effects of H+ and CO2 as independent stimuli of central respiratory chemoreceptors were studied in anesthetized cats in which pH and PCO2 on the ventral surface of the medulla (pHe and PeCO2) could be monitored in response to intravenous acid infusion or CO2 inhalation or to a combination of CO2 inhalation and base infusion that allowed PeCO2 to vary at constant pHe. Respiratory responses to these changes were monitored by measuring tidal volume (VT), respiratory frequency (f), and total ventilation. Respiratory acidosis stimulated ventilation by increasing both VT and f. Mild metabolic acidosis (decrease in pHe less than 0.05) exerted similar effects, but more severe metabolic acidosis failed to produce further stimulation. Increasing or decreasing PeCO2 at constant pHe caused pronounced increases or decreases in respiration mediated both by VT and f. For the same change in PeCO2 the respiratory effects were, however, less pronounced when pHe was kept constant than when pHe was allowed to change with PeCO2. The results suggest that both CO2 and H+ exert independent effects on respiration via central chemoreceptors.  相似文献   

4.
Central chemoreceptors are widespread within the brain stem. We suggest that their function at some sites may vary with the state of arousal. In this study, we tested the hypothesis that the function of chemoreceptors in the retrotrapezoid nucleus (RTN) varies with sleep and wakefulness. In unanesthetized rats, we produced focal acidification of the RTN by means of a microdialysis probe (tip containing the semipermeable membrane = 1-mm length, 240-microm diameter, and 45-nl volume). With the use of a dialysate equilibrated with 25% CO(2), the tissue pH change (measured in anesthetized animals) was 1) limited to within 550 microm of the probe and, 2) at the probe tip, was equivalent to that observed with end-tidal PCO(2) of 63 Torr. This focal acidification of the RTN increased ventilation significantly by 24% above baseline, on average, in 13 trials in seven rats only during wakefulness. The effect was entirely due to an increase in tidal volume. During sleep defined by behavioral criteria, ventilation was unaffected, on average, in 10 trials in seven rats. During sleep, the chemoreceptors in the RTN appear to be inactive, or, if active, the respiratory control system either is not responding or is responding with very low gain. Because ventilation is increased during sleep with all central chemoreceptor sites stimulated via systemic CO(2) application, other central chemoreceptor locations must have enhanced effectiveness.  相似文献   

5.
6.
H(+) is maintained constant in the internal environment at a given body temperature independent of external environment according to Bernard's principle of "milieu interieur". But CO2 relates to ventilation and H(+) to kidney. Hence, the title of the chapter. In order to do this, sensors for H(+) in the internal environment are needed. The sensor-receptor is CO2/H(+) sensing. The sensor-receptor is coupled to integrate and to maintain the body's chemical environment at equilibrium. This chapter dwells on this theme of constancy of H(+) of the blood and of the other internal environments. [H(+)] is regulated jointly by respiratory and renal systems. The respiratory response to [H(+)] originates from the activities of two groups of chemoreceptors in two separate body fluid compartments: (A) carotid and aortic bodies which sense arterial P(O2) and H(+); and (B) the medullary H(+) receptors on the ventrolateral medulla of the central nervous system (CNS). The arterial chemoreceptors function to maintain arterial P(O2) and H(+) constant, and medullary H(+) receptors to maintain H(+) of the brain fluid constant. Any acute change of H(+) in these compartments is taken care of almost instantly by pulmonary ventilation, and slowly by the kidney. This general theme is considered in Section 1. The general principles involving cellular CO2 reactions mediated by carbonic anhydrase (CA), transport of CO2 and H(+) are described in Section 2. Since the rest of the chapter is dependent on these key mechanisms, they are given in detail, including the role of Jacobs-Stewart Cycle and its interaction with carbonic anhydrase. Also, this section deals briefly with the mechanisms of membrane depolarization of the chemoreceptor cells because this is one mechanism on which the responses depend. The metabolic impact of endogenous CO2 appears in the section with a historical twist, in the context of acclimatization to high altitude (Section 3). Because low P(O2) at high altitude stimulates the peripheral chemoreceptors (PC) increasing ventilation, the endogenous CO2 is blown off, making the internal milieu alkaline. With acclimatization however ventilation increases. This alkalinity is compensated in the course of time by the kidney and the acidity tends to be restored, but the acidification is not great enough to increase ventilation further. The question is what drives ventilation during acclimatization when the central pH is alkaline? The peripheral chemoreceptor came to the rescue. Its sensitivity to P(O2) is increased which continues to drive ventilation further during acclimatization at high altitude even when pH is alkaline. This link of CO2 through the O2 chemoreceptor is described in Section 4 which led to hypoxia-inducible factor (HIF-1). HIF-1 is stabilized during hypoxia, including the carotid body (CB) and brain cells, the seat of CO2 chemoreception. The cells are always hypoxic even at sea level. But how CO2 can affect the HIF-1 in the brain is considered in this section. CO2 sensing in the central chemoreceptors (CC) is given in Section 5. CO(2)/H(+) is sensed by the various structures in the central nervous system but its respiratory and cardiovascular responses are restricted only to some areas. How the membranes are depolarized by CO2 or how it works through Na(+)/Ca(2+) exchange are discussed in this section. It is obvious, however, that CO2 is not maintained constant, decreasing with altitude as alveolar P(O2) decreases and ventilation increases. Rather, it is the [H(+)] that the organism strives to maintain at the expense of CO2. But then again, [H(+)] where? Perhaps it is in the intracellular environment. Gap junctions in the carotid body and in the brain are ubiquitous. What functions they perform have been considered in Section 6. CO2 changes take place in lung alveoli where inspired air mixes with the CO2 from the returning venous blood. It is the interface between the inspired and expired air in the lungs where CO2 change is most dramatic. As a result, various investigators have looked for CO2 receptors in the lung, but none have been found in the mammals. Instead, CO2/H(+) receptors were found in birds and amphibians. However, they are inhibited by increasing CO2/H(+), instead of stimulated. But the afferent impulses transmitted to the brain produced stimulation in the efferents. This reversal of afferent-efferent inputs is a curious situation in nature, and this is considered in Section 7. The NO and CO effects on CO2 sensing are interesting and have been briefly mentioned in Section 8. A model for CO2/H(+) sensing by cells, neurons and bare nerve endings are also considered. These NO effects, models for CO2/H(+) and O2-sensitive cells in the CNS have been considered in the perspectives. Finally, in conclusion, the general theme of constancy of internal environment for CO2/H(+) is reiterated, and for that CO2/H(+) sensors-receptors systems are essential. Since CO2/H(+) sensing as such has not been reviewed before, the recent findings in addition to defining basic CO2/H(+) reactions in the cells have been briefly summarized.  相似文献   

7.
We assessed the speed of the ventilatory response to square-wave changes in alveolar P(CO2) and the relative gains of the steady-state ventilatory response to CO2 of the central chemoreceptors vs. the carotid body chemoreceptors in intact, unanesthetized dogs. We used extracorporeal perfusion of the reversibly isolated carotid sinus to maintain normal tonic activity of the carotid body chemoreceptor while preventing it from sensing systemic changes in CO2, thereby allowing us to determine the response of the central chemoreceptors alone. We found the following. 1) The ventilatory response of the central chemoreceptors alone is 11.2 (SD = 3.6) s slower than when carotid bodies are allowed to sense CO2 changes. 2) On average, the central chemoreceptors contribute approximately 63% of the gain to steady-state increases in CO2. There was wide dog-to-dog variability in the relative contributions of central vs. carotid body chemoreceptors; the central exceeded the carotid body gain in four of six dogs, but in two dogs carotid body gain exceeded central CO2 gain. If humans respond similarly to dogs, we propose that the slower response of the central chemoreceptors vs. the carotid chemoreceptors prevents the central chemoreceptors from contributing significantly to ventilatory responses to rapid, transient changes in arterial P(CO2) such as those after periods of hypoventilation or hyperventilation ("ventilatory undershoots or overshoots") observed during sleep-disordered breathing. However, the greater average responsiveness of the central chemoreceptors to brain hypercapnia in the steady-state suggests that these receptors may contribute significantly to ventilatory overshoots once unstable/periodic breathing is fully established.  相似文献   

8.
Physiological evidence has indicated that central respiratory chemosensitivity may be ascribed to neurons located at the ventral medullary surface (VMS); however, in recent years, multiple sites have been proposed. Because c-Fos immunoreactivity is presumed to identify primary cells as well as second- and third-order cells that are activated by a particular stimulus, we hypothesized that activation of VMS cells using a known adequate respiratory stimulus, H(+), would induce production of c-Fos in cells that participate in the central pH-sensitive respiratory chemoreflex loop. In this study, stimulation of rostral and caudal VMS respiratory chemosensitive sites in chloralose-urethane-anesthetized rats with acidic (pH 7.2) mock cerebrospinal fluid induced c-Fos protein immunoreactivity in widespread brain sites, such as VMS, ventral pontine surface, retrotrapezoid, medial and lateral parabrachial, lateral reticular nuclei, cranial nerves VII and X nuclei, A(1) and C(1) areas, area postrema, locus coeruleus, and paragigantocellular nuclei. At the hypothalamus, the c-Fos reaction product was seen in the dorsomedial, lateral hypothalamic, supraoptic, and periventricular nuclei. These results suggest that 1) multiple c-Fos-positive brain stem and hypothalamic structures may represent part of a neuronal network responsive to cerebrospinal fluid pH changes at the VMS, and 2) VMS pH-sensitive neurons project to widespread regions in the brain stem and hypothalamus that include respiratory and cardiovascular control sites.  相似文献   

9.
The exact location of the central respiratory chemoreceptors sensitive to changes in PCO2 has not yet been determined. To avoid the confounding effects of the cerebral circulation, we used the in vitro brain stem-spinal cord of neonatal rats (1-5 days old) to identify areas within 500 microns of the ventral surface of the medulla where changes in PCO2 evoked a sudden increase in the rate of respiratory neural activity. The preparation was superfused with mock cerebrospinal fluid (CSF) while maintained at constant temperature (26 +/- 1 degrees C) and pH (7.34). Respiratory frequency increased linearly with decreases in superfusate pH (r2 = 0.92, P less than 0.001), indicating that the respiratory circuitry for the detection of CO2 and stimulation of breathing was intact in this preparation. The search for central chemoreceptors was performed with a specially designed micropipette that allowed microejection of 2-10 nl of mock CSF equilibrated with different CO2-O2 gas mixtures. The pipette was advanced in 50- to 100-microns steps by use of a microdrive to a maximum depth of 500 microns from the surface of the ventral medulla. Depending on the location of the micropipette, ejection of CO2-acidified mock CSF at depths of 100-350 microns below the ventral surface of the medulla stimulated neural respiratory output. Using this response as an indication of the location of central respiratory chemoreceptors, we found that chemoreceptive elements were located in a column in the ventromedial medulla extending from the hypoglossal rootlets caudally to an area 0.75 mm caudal to VI nerve in the rostral medulla.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The location of central respiratory chemoreceptors in amphibian larvae may change as the central chemoreceptive function shifts from driving gill to driving lung ventilation during metamorphosis. We examined this possibility in the in vitro brain stem of the pre- and postmetamorphic Rana catesbeiana tadpole by microinjecting hypercapnic artificial cerebrospinal fluid (aCSF) while recording fictive lung ventilation. The rostral and caudal brain stem were separately explored systematically using injections of 11 nl of aCSF equilibrated with 100% CO2 that transiently acidified a 500-microm region, producing a maximum reduction in pH of 0.23 +/- 0.06 at the site of injection. In postmetamorphic tadpoles, chemoreceptive sites were concentrated in the rostral compared with the caudal brain stem. No such segregation was observed in the premetamorphic tadpole. We conclude that, as in lung rhythmogenic function, respiratory chemosensitivity emerges rostrally in the amphibian brain stem during development.  相似文献   

11.
Respiratory chemical and reflex interventions have been shown to affect nasal resistance or tracheal tone, respectively. In the present study, nasal caliber (assessed from pressure at a constant flow) and tracheal tone (assessed from pressure in a fluid-filled balloon within an isolated tracheal segment) were monitored simultaneously in anesthetized, paralyzed, artificially ventilated (inspired O2 fraction = 100%) cats. We examined the effect of CO2 inhalation and sciatic nerve stimulation as well as the application of nicotine (6 X 10(-4) mol/l) or lidocaine (2% solution) to the intermediate area of the ventral medullary surface (VMS). CO2 and VMS nicotine resulted in a significant increase in tracheal pressure [147 +/- 73 and 91 +/- 86% (SD), respectively]; and a significant reduction in nasal pressure (-35 +/- 10 and -20 +/- 13%, respectively). In contrast, sciatic nerve stimulation resulted in a significant fall in both tracheal (-50 +/- 36%) and nasal pressure (-21 +/- 13%). Application of 2 or 4% lidocaine to the VMS reduced tracheal pressure but did not significantly affect nasal pressure. After VMS lidocaine, nasal and tracheal responses to CO2, sciatic nerve stimulation, or VMS nicotine, when present, were negligible. These results suggest a role for the VMS in the regulation and coordination of nasal and tracheal caliber responses.  相似文献   

12.
We evaluated rapid and transient changes in phrenic nerve (PN) and internal intercostal (IIC) activities when 0.2-0.5 ml of saline saturated with 100% CO2 was injected into the vertebral artery during various respiratory phases in decerebrated spontaneously breathing cats. The injections evoked an initial transient inhibition of ongoing PN or IIC activity with a mean onset latency of 0.17 s, followed by excitation of subsequent respiratory activities with an onset latency ranging from 0.4 to 2.7 s; the average onset latency of expiratory excitation (1.49 s) was significantly longer than that of inspiratory facilitation (0.89 s). The initial inhibitory responses were analogous to reflex effects of injections of phenyl biguanide, indicating that the initial inhibition was due to activation of vascular nociceptors and the subsequent excitation was due to stimulation of the central chemoreceptors. In addition, CO2-saline injections during hypocapnic apnea developed a quick reappearance of respiratory rhythm, and the first facilitatory effect appeared in tonic IIC activity, which became more active before rhythm started. In summary, the present study, by use of a technique of vertebral arterial injections of 100% CO2-saline, revealed dynamic properties of respiratory control system mediated by central chemoreceptors and vascular nociceptors.  相似文献   

13.
That ventilation in fish is driven by O2 has long been accepted. The O2 ventilatory drive reflects the much lower capacitance of water for O2 than for CO2, and is mediated by O2 receptors that are distributed throughout the gill arches and that monitor both internal and external O2 levels. In recent years, however, evidence has amassed in support of the existence of a ventilatory drive in fish that is keyed to CO2 and/or pH. While ventilatory responses to CO2/pH may be mediated in part by the O2 drive through CO2/pH-induced changes in blood O2 status, CO2/pH also appear to stimulate ventilation directly. The receptors involved in this pathway are as yet unknown, but the experimental evidence available to date supports the involvement of branchial CO2-sensitive chemoreceptors with an external orientation. Internally-oriented CO2-sensitive chemoreceptors may also be involved, although evidence on this point remains equivocal. In the present paper, the evidence for a CO2/pH-keyed ventilatory drive in fish will be reviewed.  相似文献   

14.
We examined the contribution of the neural elements near the ventral medullary surface (VMS) to the respiratory response caused by 2,4-dinitrophenol (DNP). Two series of experiments were performed on 12 vagotomized and sinoaortic denervated cats. The first series examined the effect of focal cooling of the VMS on the respiratory response to DNP in four spontaneously breathing, anesthetized cats. When the VMS temperature was 37 degrees C, systemic administration of DNP increased minute ventilation under nearly isocapnic conditions, and focal cooling of the intermediate area of VMS to 20 degrees C attenuated the ventilatory augmentation caused by DNP. To eliminate the influence of anesthetics, a second group of experiments was performed on eight decerebrate, artificially ventilated cats while phrenic nerve activity was monitored as an index of respiration. AgNO3 (10%) was topically applied to the VMS until the respiratory response to inhaled CO2 was abolished. Apnea occurred in seven of eight cats after AgNO3, whereas in the remaining one animal, tidal phrenic activity decreased substantially. Systemic administration of DNP produced no respiratory excitation in any of the animals. On the other hand, rhythmic respiratory activity could be provoked by electrical stimulation of the mesencephalic locomotor area and carotid sinus nerve and by excitation of somatic afferents. Histological examination of the brain stem showed that the AgNO3 had penetrated no more than 350 microns from the ventral medullary surface. These results indicate superficial structures of the VMS are of potential importance in mediating the respiratory responses to hypermetabolism.  相似文献   

15.
The factors which regulate the transition to lung gas exchange in the newborn are not well understood. The transition begins within seconds of birth with the newborn's first breath and is largely complete by 30 min of age at which time breathing is continuous, and arterial blood gas tensions and pH approach stable newborn values. Experiments indicate that sensory stimulation caused by cutaneous cooling or sciatic nerve stimulation can result in the initiation of breathing within seconds. Thus, massive sensory stimulation of the newborn caused by labour and delivery probably plays an important role in promoting the rapid onset of lung ventilation. Any delay in the onset of lung gas exchange causes a rise in arterial PCO2 and fall in pH which would stimulate breathing probably via stimulation of the central chemoreceptors. Since an impairment of CO2 elimination is usually observed after birth, a rise in arterial PCO2 likely stimulates breathing in the newborn. However, this impairment is transient and is usually corrected within 30 min to 2 h of age. Recent experiments suggest that placental perfusion inhibits the fetal central respiratory system and that this effect may be mediated by a placentally-produced respiratory inhibitor. Thus, withdrawal of a respiratory inhibitor from the circulation may play an important role in maintaining breathing in the newborn after sensory stimulation wanes and arterial PCO2 returns to normal fetal levels.  相似文献   

16.
During the last two decades, numerous investigations have been conducted to determine the degree of involvement and mechanism of action of various factors responsible for ventilatory adaptation to exercise in human. The neuromechanical ventilatory system plays a role, exercise ventilation representing a compromise between the necessity of maintaining an adequate level of chemical arterial stimulus and of avoiding mechanical overload and, consequently, respiratory fatigue. The role of arterial chemoreceptors is essential and that of muscular chemoreceptors likely. The limb mechanoreceptors also play a role essentially via small nerve fibers on the other hand. To date, there is no experimental evidence of ventilatory reflexes elicited by pulmonary chemoreceptors. Further, the action of cardiopulmonary baroreceptors was proved only in extraphysiological conditions in animals. It is also possible that a feed-forward mechanism originating in the central nervous system plays an important role. In conclusion, the time course of pulmonary ventilation during exercise could be explained by the action of humoral and neurogenic stimuli.  相似文献   

17.
The relative importance of peripheral vs. central chemoreceptors in causing apnea/unstable breathing during sleep is unresolved. This has never been tested in an unanesthetized preparation with intact carotid bodies. We studied three unanesthetized dogs during normal sleep in a preparation in which intact carotid body chemoreceptors could be reversibly isolated from the systemic circulation and perfused. Apneic thresholds and the CO(2) reserve (end-tidal Pco(2) eupneic - end-tidal Pco(2) apneic threshold) were determined using a pressure support ventilation technique. Dogs were studied when both central and peripheral chemoreceptors sensed transient hypocapnia induced by the pressure support ventilation and again with carotid body isolation such that only the central chemoreceptors sensed the hypocapnia. We observed that the CO(2) reserve was congruent with4.5 Torr when the carotid chemoreceptors sensed the transient hypocapnia but more than doubled (>9 Torr) when only the central chemoreceptors sensed hypocapnia. Furthermore, the expiratory time prolongations observed when only central chemoreceptors were exposed to hypocapnia differed from those obtained when both the central and peripheral chemoreceptors sensed the hypocapnia in that they 1) were substantially shorter for a given reduction in end-tidal Pco(2), 2) showed no stimulus: response relationship with increasing hypocapnia, and 3) often occurred at a time (>45 s) beyond the latency expected for the central chemoreceptors. These findings agree with those previously obtained using an identical pressure support ventilation protocol in carotid body-denervated sleeping dogs (Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA. J Appl Physiol 94: 155-164, 2003). We conclude that hypocapnia sensed at the carotid body chemoreceptor is required for the initiation of apnea following a transient ventilatory overshoot in non-rapid eye movement sleep.  相似文献   

18.
Aquatic environments are by their nature dynamic and dominated by fluid movements driven by lunar tides, temperature and salinity density gradients, wind-driven currents, and currents generated by the earth's rotation. Accordingly, animals within the aquatic realm must be able to sense and respond to both large-scale (advection) and small-scale (eddy turbulence) fluid dynamics, for chemical signals critically important for their survival are embedded within such movements. Aquatic crustaceans possess many types of near-field fluid-flow detectors and two general classes of chemoreceptors on their body appendages: high-threshold, near-field receptors that may be somewhat equated with the sense of taste, and low-threshold far-field receptors that can be considered as olfactory. This review briefly summarizes the distribution of hydrodynamic and high-threshold chemoreceptors in aquatic crustaceans and the physiological characteristics of olfactory receptors in lobsters; it also examines recent physiological evidence for the central nervous integration of inputs from olfactory receptors and hydrodynamic detectors, two dissimilar senses that must be combined within the brain for survival. Marine crustaceans have provided valuable insights about mechanisms of primary olfactory sensory physiology; their additional sensitivity to hydrodynamic stimulation makes them a potentially useful model for examining how these two critical sensory inputs are combined within the brain to enhance foraging behavior. Multimodal sensory processing is critically important to all animals, and the principles and concepts derived from these crustacean studies may provide generalities about neuronal processing across taxa.  相似文献   

19.
Zhuang J  Xu F  Campen M  Hernandez J  Shi S  Wang R 《Life sciences》2006,78(22):2654-2661
Hypoxia inhibits K+ channels of chemoreceptors of the carotid body (CB), which is reversed by transient carbon monoxide (CO), suggesting an inhibitory effect of CO on hypoxic stimulation of carotid chemoreceptors. Therefore, we hypothesized that the ventilatory responses to hypoxic stimulation of the CB might be depressed in intact rats by transient inhalation of CO. Anesthetized, spontaneously breathing rats were exposed to room air, and 1 min of 11% O2 (HYP) and CO (0.25-2%) alone and in combination (HYP+CO). We found that transient CO did not affect baseline cardiorespiratory variables, but significantly attenuated hypoxic ventilatory augmentation, predominantly via reduction of tidal volume. To distinguish whether this CO modulation occurs at the CB or within the central nervous system, the cardiorespiratory responses to electrical stimulation of the fastigial nucleus (FN), a cerebellar nucleus known excitatory to respiration, were compared before and during transient CO. Our results showed that the FN-mediated cardiorespiratory responses were not significantly changed by transient CO exposure. To evaluate the effect of CO accumulation, we also compared baseline cardiorespiratory responses to 5 min of 1% and 2% CO, respectively. Interestingly, only the latter produced a biphasic ventilatory response (initial increase followed by decrease) associated with hypotension. We conclude that eupneic breathing in anesthetized rat was not affected by transient CO, but was altered by prolonged exposure to higher levels of CO. Moreover, transient CO depresses hypoxic ventilatory responses mainly through peripherally inhibiting hypoxic stimulation of carotid chemoreceptors.  相似文献   

20.
Kainic acid (KA) injections into the retrotrapezoid nucleus (RTN) of anesthetized deafferented cats profoundly decreased phrenic activity (PA) and CO2 sensitivity (J. Appl. Physiol. 68: 1157-1166, 1990). In this study small electrolytic lesions of the RTN produced the same results, indicating that the KA destroyed cells. We then asked whether anesthetic depression or the absence of peripheral chemoreceptors could explain the degree of respiratory depression observed. In decerebrate cats electrolytic lesions of the RTN resulted in a decrease in PA similar to that seen under anesthesia. CO2 sensitivity was decreased by RTN lesions that extended into the caudal RTN but less so than under anesthesia. KA injections resulted in an initial increase in PA followed by a continuous decrease, a pattern similar to that seen under anesthesia but with a slower time course. CO2 sensitivity was essentially absent. Peripheral chemodenervation produced a small further decrease in PA and a downward shift of the CO2 response without change in slope. Blood pressure was unaffected by RTN lesions but was decreased by more-caudal lesions without respiratory effects. The RTN appears to be necessary for the maintenance of eupneic phrenic activity and CO2 sensitivity even in decerebrate cats with intact peripheral chemoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号