首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuous reaction norm or performance curve represents a phenotypic trait of an individual or genotype in which the trait value may vary with some continuous environmental variable. We explore patterns of genetic variation in thermal performance curves of short-term caterpillar growth rate in a population of Pieris rapae. We compare multivariate methods, which treat performance at each test temperature as a distinct trait, with function-valued methods that treat a performance curve as a continuous function. Mean growth rate increased with increasing temperatures from 8 to 35 degrees C, was highest at 35 degrees C, and declined at 40 degrees C. There was substantial and significant variation among full-sib families in their thermal performance curves. Estimates of broad-sense genetic variances and covariances showed that genetic variance in growth rate increased more than 30-fold from low (8-11 degrees C) to high (35-40 degrees C) temperatures, even after differences in mean growth rate across temperatures were removed. Growth rate at 35 and 40 degrees C was negatively correlated genetically, suggesting a genetic trade-off in growth rate at these temperatures; this trade-off may represent either a generalist-specialist trade-off and/or variation in the optimal temperature for growth. The estimated genetic variance-covariance function (G function), the function-valued analog of the variance-covariance matrix (G matrix), was quite bumpy compared with the estimated G matrix; and results of principal component analyses of the G function were difficult to interpret. The use of orthogonal polynomials as the basis functions in current function-valued estimation methods may generate artifacts when the true G function has prominent local features, such as strong negative covariances at nearby temperatures (e.g. at 35 and 40 degrees C); this may be a particular issue for thermal performance curves and other highly nonlinear reaction norms.  相似文献   

2.
Abstract .Temperature and the protein content of food affect rates of consumption and growth in herbivorous insects in different ways: reduced temperature typically reduces both consumption and growth rates, whereas reduced dietary protein typically increases consumption rate but either reduces or has no effect on growth rate. The interactions between temperature and dietary protein concentration in affecting consumption, growth and efficiency in fifth-instar caterpillars of Manduca sexta were studied, using both short-term (4 h) and long-term (duration of fifth stadium) experiments. The short-term experiments examined constant temperatures between 14 and 42°C, whereas the long-term experiments examined constant temperatures between 18 and 34°C; both experiments considered two levels of dietary protein. In both experiments, caterpillars had significantly higher consumption and frass production rates on low-protein compared with high-protein diets at each test temperature between 18 and 34°C, thereby compensating for the lower diet quality. In contrast, at more extreme temperatures (14 and 42°C) in the short-term studies, consumption and frass production rates were lower on low-protein compared with high-protein diets. As a result, there were substantial interactions between temperature and dietary protein for consumption and frass production rates in the short-term experiments, but not in the long-term experiments. These results suggest that interactions between temperature and dietary protein may emerge because of the failure of compensatory feeding responses at low and high temperatures. It is hypothesized that the failure of compensatory responses is more likely to occur under diurnally fluctuating temperatures than under a constant temperature with the same mean, and it is proposed that interactions between temperature and dietary protein for consumption are relevant to M. sexta and other caterpillars that experience wide diurnal fluctuations in temperature in the field.  相似文献   

3.
Temperature and food quality can both influence growth rates, consumption rates, utilization efficiencies and developmental time of herbivorous insects. Gravimetric analyses were conducted during two consecutive years to assess the effects of temperature and food quality on fourth instar larvae of the forest tent caterpillar Malacosoma disstria Hübner. Larvae were reared in the laboratory at three different temperatures (18, 24 and 30 degrees C) and on two types of diet; leaves of sugar maple trees Acer saccharum Marsh. located at the forest edge (sun-exposed leaves) or within the forest interior (shade-exposed leaves). In general, larvae reared at 18 degrees C had lower growth rates and lower consumption rates than larvae reared at the warmer temperatures (24 and 30 degrees C). Moreover, the duration of the instar decreased significantly with increasing temperatures. Type of diet also affected the growth rates and amount of food ingested by larvae but did not affect the duration of the instar. Larvae fed sun-exposed leaves consumed more food and gained higher biomasses. Values of approximate digestibility and efficiency of conversion of ingested food were also higher when larvae were fed sun-exposed leaves. Higher growth rates with increasing temperatures were primarily the result of the shorter stadium duration. The higher growth rates of larvae fed sun-exposed leaves were possibly the result of stimulatory feeding and consequently greater food intake and also a more efficient use of food ingested. This study suggests that the performance of M. disstria caterpillars could be enhanced by warmer temperatures and higher leaf quality.  相似文献   

4.
Allocation of organic carbon (OC) to primary energetic pathways was estimated under seasonal and artificially elevated ambient temperatures for a field population of a freshwater pulmonate snail, Physella virgata. Allocation to respiration increased with temperature. Snails allocated most assimilated OC to reproduction within their natural temperature range (15 degrees -35 degrees C), where assimilation efficiencies remained relatively stable at 25%-35%. However, in artificially heated waters exceeding 35 degrees C, declining assimilation rates and increasing respiratory demands inhibited allocation to reproduction and growth. At the species' 40 degrees C upper thermal limit, assimilation efficiencies fell below 10%, while average consumption levels more than doubled relative to snails unaffected by the thermal effluent. Ambient temperature substantially influenced OC allocation over P. virgata's natural temperature range and negatively affected growth and reproduction at temperatures approaching or exceeding maximum natural levels.  相似文献   

5.
Winter wheat (Triticum aestivum L. cv Norin No. 61) was grown at 25 degrees C until the third leaves reached about 10 cm in length and then at 15 degrees C, 25 degrees C, or 35 degrees C until full development of the third leaves (about 1 week at 25 degrees C, but 2-3 weeks at 15 degrees C or 35 degrees C). In the leaves developed at 15 degrees C, 25 degrees C, and 35 degrees C, the optimum temperature for CO(2)-saturated photosynthesis was 15 degrees C to 20 degrees C, 25 degrees C to 30 degrees C, and 35 degrees C, respectively. The photosystem II (PS II) electron transport, determined either polarographically with isolated thylakoids or by measuring the modulated chlorophyll a fluorescence in leaves, also showed the maximum rate near the temperature at which the leaves had developed. Maximum rates of CO(2)-saturated photosynthesis and PS II electron transport determined at respective optimum temperatures were the highest in the leaves developed at 25 degrees C and lowest in the leaves developed at 35 degrees C. So were the levels of chlorophyll, photosystem I and PS II, whereas the level of Rubisco decreased with increasing temperature at which the leaves had developed. Kinetic analyses of chlorophyll a fluorescence changes and P700 reduction showed that the temperature dependence of electron transport at the plastoquinone and water-oxidation sites was modulated by the temperature at which the leaves had developed. These results indicate that the major factor that contributes to thermal acclimation of photosynthesis in winter wheat is the plastic response of PS II electron transport to environmental temperature.  相似文献   

6.
Abstract 1. Western tent caterpillars hatch in the early spring when temperatures are cool and variable. They compensate for sub-optimal air temperatures by basking in the sun.
2. Tent caterpillars have cyclic population dynamics and infection by nucleopolyhedrovirus (NPV) often occurs in populations at high density.
3. To determine whether climatic variation might influence viral infection, the environmental determinants of larval body temperature and the effects of temperature on growth and development rates and larval susceptibility to NPV were examined.
4. In the field, larval body temperature was determined by ambient temperature, irradiance, and larval stage. The relationship between larval body temperature and ambient temperature was curvilinear, a property consistent with, but not necessarily limited to, behaviourally thermoregulating organisms.
5. Larvae were reared at seven temperatures between 18 and 36 °C. Larval growth and development increased linearly with temperature to 30 °C, increased at a lower rate to 33 °C, then decreased to 36 °C. Pupal weights were highest for larvae reared between 27 and 30 °C.
6. The pathogenicity (LD50) of NPV was not influenced by temperature, but the time to death of infected larvae declined asymptotically as temperature increased.
7. Taking into account larval growth, the theoretical yield of the virus increased significantly between 18 and 21 °C then decreased slightly as temperatures increased to 36 °C.
8. Control and infected larvae showed no difference in temperature preference on a thermal gradient. The modes of temperature preference were similar to those for optimal growth and asymptotic body temperatures measured in the field on sunny days.
9. Warmer temperatures attained by basking may increase the number of infection cycles in sunny springs but do not protect larvae from viral infection.  相似文献   

7.
1. The effects of temperature on the Oak–Winter Moth–Tit food chain were studied at Wytham Wood, Oxford, and experimentally in the controlled environment solardomes at the Institute of Terrestrial Ecology, Bangor.
2. Tree cores from Wytham indicated that mature Oaks grew best at high temperatures and rainfall, but with low caterpillar populations. Young trees grew less well at elevated temperature, probably because they lost more water than they gained. Elevated temperatures advanced budburst, reduced foliar nitrogen and increased leaf toughness.
3. Moth eggs laid later or maintained at cooler temperatures than average required fewer heat units to hatch. Caterpillars took up to 50 days to complete growth at field temperatures but did so in only 20 days at a constant 15 °C.
4. The mass of Tit chicks at day 15 (day 1 = egg hatch) was positively correlated with temperature and negatively correlated with rainfall during the growing period.
5. At elevated temperature, budburst and moth egg hatch were synchronized, but earlier. Late feeding larvae and larvae fed on leaves from trees grown at elevated temperature produced smaller pupae. Pupal mass was unaffected when caterpillars and trees were maintained together under the same conditions.
6. Delaying egg hatch in Tits, to simulate conditions at elevated spring temperatures, resulted in reduced chick mass, body size and fledging success. This occurred because the chicks were fed later and prey quality was poorer, because the peak of caterpillar biomass was missed.
7. We predict that moth reproductive output will be retained at elevated temperatures because both leaves and caterpillars develop faster. Brood size in birds may be reduced because they cannot lay early enough to coincide with the narrower peak of food abundance.  相似文献   

8.
Summary We examined how predation by vespid wasps,Polistes dominulus andP. fuscatus, affected the behavior, growth rate and survivorship of aggregated caterpillars ofHemileuca lucina (Saturniidae). Although these larvae can exhibit a variety of defense and escape behaviors, in general larvae reacted to wasp attacks by clinging to the hostplant. Neighboring larvae in the aggregation responded by leaving the feeding site and moving to the interior or base of the plant. To determine wheter wasp attack affected the behavior and growth of the caterpillars that escaped, a field experiment was conducted with treatments of: 1) larvae exposed to wasps, 2) larvae protected from wasps, and 3) larvae protected from wasps but with the attack of wasps simulated (=harassment). Over just one instar, protected larvae gained significantly more weight than the harassed larvae, which in turn weighed significantly more than the larvae that escaped the wasps. The behavior of attacked and harassed larvae differed from that of the protected larvae; the disturbed larvae often fed in smaller groups and in shaded portions of the plant where only mature leaves were available. A laboratory experiment showed that at 35° C (daytime temperature) larvae had significantly higher relative growth rates and significantly shorter instar duration than larvae reared at 25° C. Our results suggest that wasps, in addition to killing caterpillars, indirectly affect larval fitness by slowing larval growth, at least in part by forcing larvae into cooler microhabitats where leaves are of lower quality.  相似文献   

9.
Temperature dependence of photoinhibition and photoprotective mechanisms (10-35 degrees C) was investigated for Chenopodium album leaves grown at 25 degrees C under 500 micro mol quanta m(-2) s(-1). The fraction of active photosystem II (PSII) was determined after photoinhibitory treatment at different temperatures in the presence and absence of lincomycin, an inhibitor of chloroplast-encoded protein synthesis. In the absence of lincomycin, leaves were more tolerant to photoinhibition at high (25-35 degrees C) than at low (11-15 degrees C) temperatures. In the presence of lincomycin, the variation in the tolerance to photoinactivation became relatively small. The rate constant of photoinactivation (k(pi)) was stable at 25-35 degrees C and increased by 50% with temperature decrease from 25 to 11 degrees C. The rate constant of recovery of inactivated PSII (k(rec)) was more sensitive to temperature; it was very low at 11 degrees C and increased by an order of magnitude at 35 degrees C. We conclude that the recovery of photoinactivated PSII plays an essential role in photoprotection at 11-35 degrees C. Partitioning of light energy to various photoprotective mechanisms was further analyzed to reveal the factor responsible for k(pi). The fraction of energy utilized in photochemistry was lower at lower temperatures. Although the fraction of heat dissipation increased with decreasing temperatures, the excess energy that is neither utilized by photochemistry nor dissipated by heat dissipation was found to be greater at lower temperatures. The k(pi) value was strongly correlated with the excess energy, suggesting that the excess energy determines the rate of photoinactivation.  相似文献   

10.
Fifth-instar larvae of Manduca sexta were reared from hatching on artificial diet at 15, 20, 25, 30 and 35°C. Total development time decreased with increasing temperature. Very few larvae (12%) survived at 15°C, so this temperature was not considered further. There was some mortality at 30°C (11%), and at 35°C (50%).The absolute rate of growth in the fifth instar was faster at 25 than at 20°C, but was similar at 25, 30 and 35°C. This was true both for caterpillars that were chronically exposed to experimental temperatures (i.e. since hatching) and for those acutely exposed (i.e. reared up to fifth instar at 25°C).There was a progressive decrease with higher rearing temperatures in both the initial and final sizes of chronically exposed fifth-instar larvae. Acutely exposed caterpillars matched for initial size showed smaller temperature related differences in final size. Because of these size differences there were differences in relative growth rate which did not reflect true differences in absolute growth rate.Total food consumed by chronically exposed caterpillars was greatest at the lowest temperature (20°C), and decreased progressively with increasing temperature. The absolute rate of food consumption increased from 20 to 25°C, but did not vary significantly between 25 and 35°C. Differences in the sizes of the insects at the different temperatures meant that there were differences among relative measures of consumption that did not reflect absolute food consumption.For chronically exposed caterpillars, none of the three usual indices of food conversion efficiency (AD, ECI and ECD) varied significantly with temperature between 20 and 35°C. This implies that the effects of temperature on metabolic costs are closely matched to food consumption.Oxygen consumption increased with temperature between 20 and 25°C but was temperature compensated between 25 and 35°C.These findings are discussed in terms of their implications for the optimal temperature for growth in Manduca.  相似文献   

11.
Critical thermal limits depend on methodological context   总被引:3,自引:0,他引:3  
A full-factorial study of the effects of rates of temperature change and start temperatures was undertaken for both upper and lower critical thermal limits (CTLs) using the tsetse fly, Glossina pallidipes. Results show that rates of temperature change and start temperatures have highly significant effects on CTLs, although the duration of the experiment also has a major effect. Contrary to a widely held expectation, slower rates of temperature change (i.e. longer experimental duration) resulted in poorer thermal tolerance at both high and low temperatures. Thus, across treatments, a negative relationship existed between duration and upper CTL while a positive relationship existed between duration and lower CTL. Most importantly, for predicting tsetse distribution, G. pallidipes suffer loss of function at less severe temperatures under the most ecologically relevant experimental conditions for upper (0.06 degrees C min(-1); 35 degrees C start temperature) and lower CTL (0.06 degrees C min(-1); 24 degrees C start temperature). This suggests that the functional thermal range of G. pallidipes in the wild may be much narrower than previously suspected, approximately 20-40 degrees C, and highlights their sensitivity to even moderate temperature variation. These effects are explained by limited plasticity of CTLs in this species over short time scales. The results of the present study have broad implications for understanding temperature tolerance in these and other terrestrial arthropods.  相似文献   

12.
Geographic variation is characteristic of many physiological traits at the population and species levels. However, several recent studies have suggested that population-level variation is either limited or that it is mostly a consequence of phenotypic plasticity. Here we show that there is considerable physiological inertia in cold hardiness, upper thermal tolerance limits and desiccation resistance in caterpillars of the sub-Antarctic moth Embryonopsis halticella Eaton, such that populations from two climatically different islands are physiologically very similar. Both populations are moderately chill tolerant, with no difference in the supercooling points of caterpillars (-17 to -20 degrees C). Within their host plants caterpillars of both populations freeze at substantially higher, and statistically equivalent temperatures (-9.5 to -11.5 degrees C). The populations also have similar upper lethal limits (38 degrees C), and survival times of dry conditions (6-170 h depending on mass). The previously inexplicably low freezing point of caterpillars at the climatically less severe Marion Island seems likely a consequence of physiological inertia given that the freezing point of caterpillars within their hosts is only a few degrees below absolute minima at the older, and colder, Heard Island. Lack of adaptive geographic variation in physiological traits has consequences for models of range limits, and highlights the importance of exploring phenotypic plasticity as a response to climatic variation.  相似文献   

13.
AIMS: To investigate the thermal biology of entomopathogenic fungi being examined as potential microbial control agents of Varroa destructor, an ectoparasite of the European honey bee Apis mellifera. METHODS AND RESULTS: Colony extension rates were measured at three temperatures (20, 30 and 35 degrees C) for 41 isolates of entomopathogenic fungi. All of the isolates grew at 20 and 30 degrees C but only 11 isolates grew at 35 degrees C. Twenty-two isolates were then selected on the basis of appreciable growth at 30-35 degrees C (the temperature range found within honey bee colonies) and/or infectivity to V. destructor, and their colony extension rates were measured at 10 temperatures (12.5-35 degrees C). This data were then fitted to Schoolfield et al. [J Theor Biol (1981)88:719-731] re-formulation of the Sharpe and DeMichele [J Theor Biol (1977)64:649-670] model of poikilotherm development. Overall, this model accounted for 87.6-93.9% of the data variance. Eleven isolates exhibited growth above 35 degrees C. The optimum temperatures for extension rate ranged from 22.9 to 31.2 degrees C. Only three isolates exhibited temperature optima above 30 degrees C. The super-optimum temperatures (temperature above the optimum at which the colony extension rate was 10% of the maximum rate) ranged from 31.9 to 43.2 degrees C. CONCLUSIONS: The thermal requirements of the isolates examined against V. destructor are well matched to the temperatures in the broodless areas of honey bee colonies, and a proportion of isolates, should also be able to function within drone brood areas. SIGNIFICANCE AND IMPACT OF THE STUDY: Potential exists for the control of V. destructor with entomopathogenic fungi in honey bee colonies. The methods employed in this study could be utilized in the selection of isolates for microbial control prior to screening for infectivity and could help in predicting the activity of a fungal control agent of V. destructor under fluctuating temperature conditions.  相似文献   

14.
Temperature and nutrition are two prominent environmental variables influencing juvenile growth rate in ectotherms. These two factors interact in complex ways. Here, we present a comprehensive analysis of the interactive effects of temperature and nutrition on various components of fitness (growth rate, survival), food intake, and level of energy storage in an insect herbivore, caterpillars of Spodoptera exigua Hübner (Lepidoptera: Noctuidae). In a factorial experimental design, final‐instar caterpillars (i.e., fifth instars) were individually reared at one of three constant temperatures (18, 26, and 34 °C), in which they received one of six diets differing in their ratio of protein and digestible carbohydrate [P:C mixture, expressed as the percentage of diet by dry mass: protein 42%:carbohydrate 0% (42:0), 35:7, 28:14, 21:21, 14:28, and 7:35]. Within the range of test temperatures, larval growth rate increased with rising temperature and was strongly affected by P:C mixture, reaching a maximum on moderate P:C diets at each temperature and falling at very high and low P:C mixtures. There was a significant temperature*diet interaction, such that the difference in growth rates between temperatures was greatest on moderate P:C diets and least on the most extreme diets (42:0 and 7:35). Food intake rate patterns followed a similar trend to growth rate. Rapidly growing animals at high ambient temperature suffered high mortality across all dietary P:C mixtures, but to a greater extent on the extremely unbalanced diets. This suggests that there are developmental and physiological costs associated with fast growth at high temperature, as indicated by high rate of pupation failure and reduced lipid storage efficiency. Our study shows how temperature and nutrition interplay to mediate phenotypic variations in growth rates and energy utilization in an insect ectotherm.  相似文献   

15.
While variation in metabolic rate at a single temperature can occur for a variety of reasons and the effect of temperature is well established in insects, within-generation variation of metabolic rate-temperature relationships has been relatively poorly explored. In this study, we investigate the effects of gender, age, feeding and pregnancy, as well as three acclimation temperatures (19, 24, 29 degrees C), on standard metabolic rate and its temperature-dependence within post-developmental (i.e. non-teneral) adult G. morsitans morsitans. Although most of the independent variables influenced metabolic rate at a single test temperature (P<0.001 in most cases), and cold-acclimation resulted in significant up-regulation of metabolic rate at all test temperatures relative to 24 and 29 degrees C acclimation (P<0.0001), mass-independent metabolic rate-temperature relationships were surprisingly invariant over all experimental groups (P>0.05 in all cases). Slopes of log10 metabolic rate (ml CO2h(-1)) against temperature ( degrees C) ranged from a minimum of 0.03035 (+/-S.E.=0.003) in young fasted females to a maximum of 0.03834 (+/-0.004) in mature fasted males. These findings have implications for predicting the metabolic responses of tsetse flies to short-term temperature variation and may also have applications for modelling tsetse population dynamics as a function of temperature.  相似文献   

16.
Abstract. . The independent and interactive effects of temperature and dietary nitrogen content on performance of the gypsy moth (Lymantria dispar L.) were examined. In long-term feeding trials, larvae were reared from egg hatch to pupation on low (1.5%) and high (3.7% dry weight) nitrogen diets, under three temperature regimes. Short-term feeding trials with fourth instars and the same treatments were conducted in order to calculate nutritional indices.
Higher temperatures did not influence larval survival and marginally increased final pupal weights, but strongly decreased long-term development rates. They also accelerated short-term growth and consumption rates, and tended to improve food processing efficiencies. High concentrations of dietary nitrogen increased survival rates and final pupal weights markedly, but decreased long-term development rates only marginally. A high content of dietary nitrogen also accelerated short-term development and growth rates, reduced consumption rates, and improved food digestibility. Insects responded to low nitrogen-content diets primarily by eating faster, rather than by altering efficiency of nitrogen use. In the short-term feeding trials, thermal regime and dietary nitrogen interacted to influence growth rates, overall food processing efficiencies and nitrogen consumption rates. No interactive effects were observed in long-term studies.
This research demonstrates that small changes in thermal regime and ecologically relevant variation in dietary nitrogen content can strongly affect gypsy moth performance. Moreover, various performance parameters are differentially sensitive to the direct and interactive effects of temperature and diet.  相似文献   

17.
With average global temperatures predicted to increase over the next century, it is important to understand the extent and mechanisms of C4 photosynthetic acclimation to modest increases in growth temperature. To this end, we compared the photosynthetic responses of two C4 grasses (Panicum coloratum and Cenchrus ciliaris) and one C4 dicot (Flaveria bidentis) to growth at moderate (25/20 degrees C, day/night) or high (35/30 degrees C, day/night) temperatures. In all three C4 species, CO2 assimilation rates (A) underwent significant thermal acclimation, such that when compared at growth temperatures, A increased less than what would be expected given the strong response of A to short-term changes in leaf temperature. Thermal photosynthetic acclimation was further manifested by an increase in the temperature optima of A, and a decrease in leaf nitrogen content and leaf mass per area in the high- relative to the moderate-temperature-grown plants. Reduced photosynthetic capacity at the higher growth temperature was underpinned by selective changes in photosynthetic components. Plants grown at the higher temperature had lower amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase and cytochrome f and activity of carbonic anhydrase. The activities of photosystem II (PSII) and phosphoenolpyruvate carboxylase were not affected by growth temperature. Chlorophyll fluorescence measurements of F. bidentis showed a corresponding decrease in the quantum yield of PSII (phi(PSII)) and an increase in non-photochemical quenching (phi(NPQ)). It is concluded that through these biochemical changes, C4 plants maintain the balance between the various photosynthetic components at each growth temperature, despite the differing temperature dependence of each process. As such, at higher temperatures photosynthetic nitrogen use efficiency increases more than A. Our results suggest C4 plants will show only modest changes in photosynthetic rates in response to changes in growth temperature, such as those expected within or between seasons, or the warming anticipated as a result of global climate change.  相似文献   

18.
Physical constraints on the foraging ecology of a predatory snail   总被引:1,自引:0,他引:1  
We studied the effects of aerial exposure and high summer temperatures on the southern oyster drill ( Stramonita haemastoma ), feeding on the American oyster, Crassostrea virginica . In the laboratory, oyster drill feeding rates and growth were highest at 25 and 30°C, some mortality occurred at 35°C, all snails died at 40 and 45°C, and the 28-day LC 50 was 35.7°C. In a second experiment where both water temperature (25 vs . 33°C) and aerial exposure were varied, only simulated tidal exposure lowered oyster drill feeding and growth rates. In field cage experiments, oyster drills had reduced feeding rates and growth at intertidal sites, but snail growth rates increased in late summer with warmer water temperature. We therefore conclude that aerial exposure, not high temperature, is the major factor limiting oyster drill feeding and growth in intertidal oyster reefs. Field experiments with partial cages also suggested that ambient predation rates were much higher at a subtidal than at a nearby intertidal site. Because southern oyster drills have depressed feeding, growth, and possibly lower fitness in intertidal oyster reefs during the summer, this reduced predation risk may provide a refuge for intertidal oysters.  相似文献   

19.
The effect of temperatures ranging from 15 to 35 degrees C on a culture of Brettanomyces bruxellensis was investigated in regards to thermodynamics, metabolism, and kinetics. In this temperature range, we observed an increase in growth and production rates. The growth behavior was well represented using the Arrhenius model, and an apparent activation energy of 16.61 kcal/mol was estimated. A stuck fermentation was observed at 35 degrees C as represented by high cell death. The carbon balance established that temperature had no effect on repartition of the glucose consumption between biomass and products. Hence, the same biomass concentration was obtained for all temperatures, except at 35 degrees C. Moreover, using logistic and Luedeking-Piret models, we demonstrated that production rates of ethanol and acetic acid were partially growth associated. Parameters associated with growth (alpha eth and alpha aa) remained constant with changing temperature, whereas, parameters associated with the population (beta eth and beta aa) varied. Optimal values were obtained at 32 degrees C for ethanol and at 25 degrees C for acetic acid.  相似文献   

20.
In tropical areas, where vector insects populations are particularly numerous, temperature usually range between 25 degrees C and 35 degrees C. Considering the importance of such temperature variation in determining mosquitoes population dynamics, in this work the developmental, eclosion and survival rates of the immature stages of Aedes albopictus (Skuse) were compared under constant 25, 30 and 35 degrees C (using acclimatized chambers) and environmental (25 degrees C to 29 degrees C) temperatures. The hatching rate was considered as total number of larvae recovered after 24h. The development period as well as larval and pupal survival rate were evaluated daily. Eclosion rate was significantly higher under environmental temperature than under the studied constant temperatures, suggesting that temperature variation may be an eclosion-stimulating factor. The mean eclosion time increased with the temperature, ranging from 2.8h (25 degrees C) to 5.2h (35 degrees C). The larval period was greatly variable inside each group, although it did not differ significantly amongst groups (11.0 +/- 4.19 days), with individuals showing longer larval stages in water at 35 degrees C (12.0 +/- 4.95 days) and environmental temperature (13.6 +/- 5.98 days). Oppositely, survival was strongly affected by the higher temperature, where only one individual lived through to adult phase. The results suggest that population of Ae. albopictus from Recife may be adapting to increasing of environmental temperatures and that the limiting temperature to larval development is around 35 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号