首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubilization and characterization of CCK receptors from mouse pancreas   总被引:3,自引:0,他引:3  
To study the characteristics of the CCK receptor, plasma membranes were prepared from mouse pancreatic acini, and CCK receptors solubilized with 1% digitonin. To measure hormone binding, the solubilized receptors were incubated with 125I-CCK at 4 degrees C and the hormone-receptor complex was precipitated with 10% polyethylene glycol. Specific 125I-CCK binding by the solubilized CCK receptor was compared to that by the plasma membrane-bound CCK receptor. Both the solubilized and the membrane-bound receptor displayed optimal binding at an acidic pH (between 6.0 and 7.0) and showed a similar sensitivity to monovalent and divalent cations. The solubilized receptors preserved their relative specificity for CCK molecules: CCK-8 greater than CCK-33 greater than desulfated CCK-8 greater than CCK-4. However, the soluble CCK receptor had a lower binding affinity than plasma membrane-bound receptor. Solubilized receptors preserved their relative specificity for inhibitors of CCK binding and action: dibutyryl cyclic GMP greater than N-CBZ-tryptophan greater than proglumide. Solubilized receptors had affinities for these antagonists that were similar to receptors on intact plasma membranes. These data indicate, therefore, that the specific binding properties of the CCK receptor are inherent to the solubilized glycoprotein molecules.  相似文献   

2.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

3.
Synthetic gonadotropin-releasing hormone (GnRH) was monoiodinated at a high specific radioactivity with 125I. The iodinated hormone retained full biological activity as assessed by the release of luteinizing hormone in vitro from bovine anterior pituitary tissue slices. Specific binding of 125I-labeled gonadotropin-releasing hormone of high affinity and low capacity was obtained using dispersed bovine anterior pituitary cells. The binding had sigmoid characteristics, compatible with the presence of more than one binding site. The subcellular fraction responsible for binding was identified with the plasma membranes. However, significant binding also occurred in the secretory granules fraction. The plasma membranes were solubilized with sodium dodecyl sulfate. Using gonadotropin-releasing hormone covalently coupled to a solid phase, a protein was purified by an affinity technique from the solubilized plasma membrane preparation which possessed similar binding propperties as plasma membranes, both intact and solubilized. The protein migrated as a single component on polyacrylamide gel in sodium dodecyl sulfate and the estimated molecular weight was 60 000. The character of the gonadotropin-releasing hormone concentration dependence binding as well as association kinetics were multiphasic and suggested the presence of more than one binding site. When analyzed by the Hill plot, the Hill coefficient of all binding curves was always greater than one which is compatible with positive cooperativity. This was further supported by the dissociation studies where the dissociation rate was inversely proportionate to both the gonadotropin-releasing hormone concentration and the time interval during which the gonadotropin-releasing hormone-gonadotropin-releasing hormone receptor protein complex was formed. Using difference chromatography, aggregation of the purified gonadotropin-releasing hormone receptor protein was demonstrated to occur upon its exposure to gonadotropin-releasing hormone. The formed macromolecular complexes bound preferentially 125I-labeled gonadotropin-releasing hormone. It is concluded that a single receptor protein is responsible for gonadotropin-releasing hormone binding in the bovine anterior pituitary. It is a part of the plasma membranes. Its interaction with gonadotropin-releasing hormone provokes transitions of the protein into different allosteric forms and this may be related to the biological effect of gonadotropin-releasing hormone on gonadotropin secretion.  相似文献   

4.
Photoreactive derivatives of GnRH and its analogues were prepared by incorporation of the 2-nitro-4(5)-azidophenylsulfenyl [2,4(5)-NAPS] group into amino acid residues at positions 1, 3, 6, or 8 of the decapeptide sequence. The modification of Trp3 by the 2,4-NAPS group led to a complete loss of the luteinizing hormone (LH) releasing as well as LH-release-inhibiting activity of the peptide. The [D-Lys(2,4-NAPS)]6 analogue was a very potent agonist that, after covalent attachment by photoaffinity labeling, caused prolonged LH secretion at a submaximal rate. [Orn(2,4-NAPS)]8-GnRH, a full agonist with a relative potency of 7% of GnRH, after photoaffinity labeling caused prolonged maximal LH release from cultured pituitary cells. In contrast, [Orn(2,5-NAPS)]8-GnRH, although being equipotent with the 2,4-NAPS isomer in terms of LH releasing ability, was unable to cause prolonged LH release after photoaffinity labeling. Thus, [Orn(2,4-NAPS)]8-GnRH is a very effective photolabeling ligand of the functionally significant pituitary GnRH receptor. Based on this compound, a pituitary peptidase resistant derivative, D-Phe6,[Orn(2,4-NAPS)]8-GnRH-(1-9)-ethylamide, was synthesized. This derivative showed high-affinity binding to pituitary membranes with a Kd comparable to those of other GnRH analogues. A radioiodinated form of this peptide was used for pituitary GnRH-receptor labeling. This derivative labeled 59- and 57-kDa proteins in rat and 58- and 56-kDa proteins in bovine pituitary membrane preparations, respectively. This peptide also labeled pituitary GnRH receptors in the solubilized state and therefore appears to be a suitable ligand for the isolation and further characterization of the receptor.  相似文献   

5.
The demonstration that GnRH provokes the accumulation of diacylglycerol and the redistribution of protein kinase C to the membrane fraction in gonadotropes suggests a role for this enzyme as a mediator of GnRH action. In the present work we have investigated the possibility that protein kinase C might mediate GnRH-stimulated receptor down-regulation and desensitization. Pretreatment of pituitary cells for 6 h with GnRH (10(-11) - 10(-6) M) caused a biphasic change in GnRH receptor number [the maximum binding (Bmax) for 125I-buserelin binding was increased by 10(-10) M GnRH and reduced by 10(-7) and 10(-6) M GnRH] and caused desensitization (pretreatment with 10(-9) - 10(-6) M GnRH reduced the proportion of cellular LH released in a subsequent challenge with GnRH). Pretreatment for 6 h with 0.2-200 nM phorbol myristate acetate (a protein kinase C-activating phorbol ester) did not cause desensitization, but at 200 nM, did reduce GnRH receptor number. As a further test of the requirement for protein kinase C for GnRH action, cells were depleted of all measurable protein kinase C (and rendered unresponsive to protein kinase C activators) by prior treatment with a high dose of phorbol myristate acetate (500 nM for 6 h followed by 12 h in plating medium). Depletion of protein kinase C did not alter the ability of GnRH to desensitize gonadotropes or down-regulate its own receptors. The demonstration that the effects of GnRH on receptor number and gonadotrope responsiveness are neither blocked by depletion of protein kinase C nor entirely mimicked by activation of protein kinase C suggests that these effects of the releasing hormone are not solely mediated by this enzyme.  相似文献   

6.
A mathematical model is developed to investigate the rate of release of luteinizing hormone (LH) from pituitary gonadotropes in response to short pulses of gonadotropin-releasing hormone (GnRH). The model includes binding of the hormone to its receptor, dimerization, interaction with a G protein, production of inositol 1,4, 5-trisphosphate, release of Ca(2+) from the endoplasmic reticulum, entrance of Ca(2+) into the cytosol via voltage-gated membrane channels, pumping of Ca(2+) out of the cytosol via membrane and endoplasmic reticulum pumps, and release of LH. Cytosolic Ca(2+) dynamics are simplified (i.e., oscillations are not included in the model), and it is assumed that there is only one pool of releasable LH. Despite these and other simplifications, the model explains the qualitative features of LH release in response to GnRH pulses of various durations and different concentrations in the presence and absence of external Ca(2+).  相似文献   

7.
Purification and partial characterization of rat ovarian lutropin receptor   总被引:2,自引:0,他引:2  
Lutropin (LH) receptor was solubilized from pseudopregnant rat ovaries and purified by two cycles of affinity chromatography on human choriogonadotropin (hCG)-Affi-Gel 10. The purified receptor preparation contained a single class of high-affinity 125I-hCG binding sites with an equilibrium dissociation constant (Kd) of 5.1 X 10(-10) M (at 20 degrees C) and had a specific hormone binding capacity of 7920 pmol/mg of protein. The purified receptor migrated as a single 90-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both nonreducing and reducing conditions. Affinity cross-linking of the purified receptor to 125I-hCG produced a 130-kDa complex. Hormone-binding ability of the purified 90-kDa polypeptide was demonstrated also by ligand blotting. The purified receptor was electroblotted onto nitrocellulose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions followed by incubation with 125I-hCG. Autoradiography revealed labeling of a 90-kDa band. This labeling was displaced by unlabeled hCG and human LH but not by human follitropin or rat prolactin. In addition, LH receptors of bovine corpora lutea and mouse Leydig tumor cells were shown by ligand blotting to contain a 90-kDa hormone binding unit, suggesting that LH receptor structure is well conserved among mammalian species. The purified rat ovarian LH receptor bound to immobilized wheat germ agglutinin, implying that the receptor is a glycoprotein. These results demonstrate that the hormone-binding unit of rat ovarian LH receptor is a 90-kDa membrane glycopolypeptide.  相似文献   

8.
Copper stimulated LH release from cultured rat pituitary cells in a dose-and time-dependent manner. After 4 h of incubation with 10 mu M Cu2+, LH release was stimulated by 3-fold. The release of LH stimulated by Cu2+ was Ca2+ dependent, thus excluding the possibility that the releasing activity of this divalent cation was due to a toxic effect on pituitary cells. The stimulatory action of Cu2+ is substantially mediated via the GnRH-receptors since Cu2+ inhibited 125I-Buserelin binding and since GnRH-antagonist blocked most of the Cu2+-stimulated LH release (80%). Both GnRH (1 microM) and Cu2+ (10 microM) induced desensitization of pituitary cells to a subsequent stimulation of either GnRH (0.5 nM) or Cu2+ (10 microM). However, in contrast to GnRH, Cu2+ did not induce down regulation of GnRH receptors. These findings suggest that the Cu2+ effects are mainly mediated through the GnRH receptors.  相似文献   

9.
Previous studies have shown that substance P (SP), an undecapeptide widely distributed in the gastrointestinal tract and in the peripheral and central nervous system, is a putative regulatory peptide involved in the control of reproductive function. Specifically, SP inhibited, at the anterior pituitary (AP) level, the stimulatory action of a physiological concentration (10(-8) M) of Gonadotropin Releasing Hormone (GnRH) on the release of the luteinizing hormone (LH). In the present work, we have demonstrated the presence of specific SP binding sites in the AP and related changes in the number of these sites to GnRH receptor number, hypothalamic SP and GnRH content and LH secretion during the rat estrous cycle. High affinity saturable SP binding sites (Kd, 1.5 approximately equal to 10 nM) were demonstrated in AP membranes using [3H]-SP or a novel analog, [125I]-(D-Tyr0, NorLeu11)SP. The binding affinity of SP fragments decreased with progressive removal of amino acid residues from N or C termini of the molecule. Other neuropeptides had low affinity for the SP binding sites. During the rat estrous cycle, SP and GnRH binding capacity of the anterior pituitary were inversely related. At the time of the proestrous LH surge, the AP binding capacity was low for GnRH but high for SP. The highest content of SP in the hypothalamus were recorded during the afternoon of proestrus when hypothalamic GnRH levels were lowest and the preovulatory surge occurred. These studies have established the presence of high affinity specific binding sites for SP in the AP which alter during the estrous cycle in a manner appropriate for mediating the direct inhibitory effects of SP on LH release in vitro.  相似文献   

10.
Both glutamate and gamma-aminobutyric acid (GABA) are involved in pituitary hormone release in fish. Glutamate serves 2 purposes, both as a neurotransmitter and as a precursor for GABA synthesis. Glutamate can be catabolized to GABA by the actions of 2 distinct but related enzymes, glutamate decarboxylase 65 (GAD65) and GAD67. They derive from 2 different genes that likely arose from an early gene duplication prior to the emergence of teleosts more than 400 million years ago. There is good evidence for the involvement of GABA in luteinizing hormone (LH) release in fish. The mechanism of GABA action to stimulate LH release appears to be a combination of effects on GnRH release, potentiation of gonadotropin hormone-releasing hormone (GnRH) action, and in some cases directly at the LH cell. These actions appear to be dependent on such factors as sex or sex steroid levels, and there may also be species differences. Nevertheless, the stimulatory effects of GABA on LH are present in at least 4 fish species. In contrast, convincing data for the inhibitory effects of GABA on LH release have only been observed in 1 fish species. The sites and mechanisms of action of amino acid neurotransmitters on LH release have yet to be fully characterized. Both 130N-methyl-D-aspartic acid (NMDA) and S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors are likely to have important roles. We suggest that it is a receptor similar to the GABA(A) type which mediates the effects of GABA on LH release in fish, at least partially acting on the GnRH neuron, but likely directly acting at the gonadotroph as well. GABA may also be involved in regulating the release of other pituitary hormones in fish, namely follicle stimulating hormone (FSH = GTH-I), prolactin, and growth hormone. Based on the findings described in this review, a working model for the involvement of glutamate and GABA in the regulation of LH release in teleost fish is proposed.  相似文献   

11.
In a previous study, a model was developed to investigate the release of luteinizing hormone (LH) from pituitary cells in response to a short pulse of gonadotropin-releasing hormone (GnRH). The model included: binding of GnRH to its receptor (R), dimerization and internalization of the hormone receptor complex, interaction with a G protein, production of inositol 1,4,5-trisphosphate (IP3), release of calcium from the endoplasmic reticulum (ER), entrance of calcium into the cytosol via voltage gated membrane channels, pumping of calcium out of the cytosol via membrane and ER pumps, and release of LH. The extended model, presented in this paper, also includes the following physiologically important phenomena: desensitization of calcium channels; internalization of the dimerized receptors and recycling of some of the internalized receptors; an increase in G q concentration near the plasma membrane in response to receptor dimerization; and basal rates of synthesis and degradation of the receptors. With suitable choices of the parameters, good agreement with a variety of experimental data of the LH release pattern in response to pulses of various durations, repetition rates, and concentrations of GnRH were obtained. The mathematical model allows us to assess the effects of internalization and desensitization on the shapes and time courses of LH response curves.  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) receptors were solubilized from rat pituitary membrane preparations in an active form by using the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid). The solubilized receptor exhibits high affinity, saturability, and specificity. The soluble supernatant retained 100% of the original binding activity when stored at 4 or -20 degrees C in the presence of 10% glycerol. The receptors were resolved into two components on the basis of chromatography on wheat germ agglutinin-agarose. Homogeneous receptor preparation was obtained by two cycles of affinity chromatography on immobilized avidin column coupled to [biotinyl-D-Lys6]GnRH. The overall recovery of the purified receptor was 4-10% of the initial activity in the CHAPS extract, and the calculated purification -fold was approximately 10,000 to 15,000. Analysis of iodinated purified GnRH receptors by autoradiography indicated the presence of two bands, Mr = 59,000 and 57,000. This was confirmed by photoaffinity labeling of the partially purified receptors and suggests that both components can specifically bind the hormone.  相似文献   

13.
Gonadotropin-releasing hormone (GnRH) stimulates release of pituitary gonadotropins by activating specific plasma membrane receptors. In the present studies, we have used activators of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) to probe the binding characteristics of agonist- or antagonist-occupied GnRH receptors in intact cell cultures, using a radioligand receptor assay. Specific binding of [125I-Tyr5,D-Ser(tBu)6,Pro9,NHEt]GnRH (Buserelin), a high-affinity GnRH agonist, was increased to 180% of control in the presence of 150 nM phorbol 12-myristate 13-acetate (PMA) or 100 nM phorbol 12,13-dibutyrate (PDB), and to 125% of control in the presence of 200 microM 1,2-dioctanoylglycerol, after 20 min at 23 degrees C. The PMA effects were associated with apparent increases in both binding affinity and number of binding sites. The effects of protein kinase C activators on Buserelin binding were concentration- and time-dependent and were not seen with 4 alpha-PMA or 1,2-dioctanoyl-3-Cl-glycerol, neither of which activate protein kinase C. In contrast, PMA had no measurable effects on specific binding of a GnRH receptor antagonist, Ac[D-pCl-Phe1,2,D-Trp3,125I-Tyr5,D-Lys6,D-Ala10]GnRH. When cell cultures were pretreated with 100 nM PDB in the absence of GnRH and then washed to remove the phorbol ester, no effects of prior protein kinase C activation were detected upon subsequent addition of Buserelin. However, when PDB pretreatment was carried out in the presence of 0.3 microM GnRH, residual enhancement of Buserelin binding, but not antagonist binding, was observed at either 23 or 4 degrees C. The radiolabeled agonist activated, and the antagonist blocked, GnRH receptor-mediated luteinizing hormone release and [3H]inositol phosphate production in cells preloaded with [3H]inositol. These findings suggest that the action of protein kinase C on the GnRH receptor, either direct or indirect, requires the receptor to be in an activated (agonist-occupied) state but does not require receptor internalization. The mechanism of these effects on GnRH agonist binding is not known but may involve sequestration of surface receptors, expression of new receptors, and/or modulation of GnRH receptor affinity.  相似文献   

14.
The EPR technique with paramagnetic Mn(II) ions has been used to probe the negatively charged sites on the surface of modified low-density lipoprotein (LDL). LDL modified in five different ways exhibited increased binding capacity for divalent cations. Enhanced binding is caused by the increase in the number of 'strong' binding sites. The 'strong' sites have been identified to be the aspartic acid and/or glutamic acid carboxyl residues and the 'weak' sites are zwitter-ionic phospholipids. In native LDL the negative groups make 'bonds' with the positive lysyl residues, thus stabilizing the structure. Any deprotonation or modification of the lysine amino groups makes the LDL structure more loose and the amino acid carboxyl groups accessible to divalent cations.  相似文献   

15.
To examine the role of gamma-aminobutyric acid (GABA)(A) receptor mediating systems in the control of gonadotropin-releasing hormone (GnRH) release from the medial preoptic area (MPOA) of ewes during the follicular phase of the estrous cycle, the extracellular concentrations of GnRH, beta-endorphin, noradrenaline (NE), dopamine (DA), 4-hydroxy-3-methoxy-phenyl-glycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC) were quantified during the local infusion of muscimol and bicuculline (agonist and antagonist of GABA(A) receptors, respectively) to this structure. Stimulation of GABA(A) receptors markedly attenuated GnRH release, increased beta-endorphin release and noradrenergic system activity in the MPOA. The decrease of the luteinizing hormone (LH) concentration in blood plasma and LH pulse amplitude suggests that a GABA(A) receptor agonist in the MPOA also suppresses GnRH release from the GnRH axon terminals in the ventromedial hypothalamus/nucleus infundibularis region (VEN/NI). Blockade of GABA(A) receptors had no evident effect on GnRH/LH secretion but decreased beta-endorphin release and increased the extracellular DOPAC concentration. The suppressive influence of muscimol in the MPOA on GnRH release might be considered a net result of its direct inhibitory effect on GnRH release, indirect inhibitory influence on GnRH release through activation of the beta-endorphinergic system, and facilitation of GnRH neurons by increasing noradrenaline release. The results obtained during bicuculline perfusion on these systems' activity are not sufficiently consistent to provide a clear understanding of the lack of changes in the GnRH/LH release under blockade of GABA(A) receptors. We conclude that the MPOA in ewes during the follicular phase is an important regulatory site where stimulation of GABA(A) receptors both decreases GnRH secretion and increases beta-endorphin release.  相似文献   

16.
The present experiments were designed to study the interaction between estradiol benzoate (EB) and thyroxine (T4) given in vivo on the responsiveness of pituitary luteinizing hormone (LH) to gonadotropin-releasing hormone (GnRH) and the release of GnRH in vitro. Ovariectomized-thyroidectomized (Ovx-Tx) rats were injected s.c. with saline or T4 (2 micrograms/100 g b.wt), and oil or EB (0.1 microgram) once daily for 40 days following a 2 x 2 factorial design. All animals were then decapitated and blood samples were collected. Anterior pituitaries (APs) were incubated in vitro with and without 0.1 ng GnRH at 37 degrees C for 4 h. Mediobasal hypothalami (MBHs) were excised and then incubated with and without APs from Ovx donor rats. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. The LH level in media containing MBHs and donor APs was used as the index of bioactive GnRH release. In Ovx-Tx rats, T4 injections reduced the serum LH concentration, the pituitary LH response to GnRH, and the bioactive as well as the immunoreactive GnRH release. The serum LH levels and the spontaneous as well as the GnRH-stimulated release of LH in vitro were suppressed in Ovx-Tx rats following administration of EB. By contrast, the serum LH concentration, as well as pituitary LH response to GnRH and GnRH release in vitro, were higher in the group treated with both T4 and EB than in that treated with saline and EB. These results suggest that the differential changes in the LH secretion after thyroidectomy of Ovx versus non-Ovx rats are due to an antagonistic effect between T4 and estrogen on the response of pituitary LH to GnRH, and the release of GnRH.  相似文献   

17.
D Keinan  E Hazum 《Biochemistry》1985,24(26):7728-7732
On the basis of the spatial conformation of gonadotropin-releasing hormone (GnRH), we have predicted that aromatic amino acids and at least one carboxyl group are involved in the recognition site of the receptor. Therefore, various specific reagents were examined for their ability to interfere with the binding of GnRH to its receptor. Pretreatment of pituitary membrane preparations with sodium periodate decreased the specific binding in a dose-dependent manner (IC50 = 0.5 mM) due to a decrease in receptor affinity. This indicated the presence of a sugar moiety in the binding site. Tryptophan is another constituent that participates in the GnRH binding site, as pretreatment of pituitary membranes with 2-methoxy-5-nitrobenzyl bromide inhibited the binding (IC50 = 0.22 mM) by decreasing receptor affinity. In addition, the native hormone conferred on the binding site a protective effect against inactivation by 2-methoxy-5-nitrobenzyl bromide. Pretreatment of membranes with p-diazobenzenesulfonic acid also inhibited the binding of 125I-Buserelin (IC50 = 0.1 mM), indicating the presence of tyrosine within or near the binding site. Pretreatment of pituitary membrane preparations with dithiothreitol also inhibited the binding due to a decrease in the binding affinity, which was accompanied by an increase in receptor number. These data suggest that there are disulfide bonds within or near the binding region. Treatment with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and glycine ethyl ester also prevented binding in a dose-dependent manner and implies that free carboxylic groups are involved in the binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Preincubation of cultured rat pituitary cells with 10 micrograms/ml of either wheat germ agglutinin (WGA) or concanavalin A inhibited LH release stimulated with GnRH (0.5 nM) by 55% and 40%, respectively. WGA-inhibition of LH release stimulated by GnRH was dose-dependent, reaching a plateau of 75% inhibition at 50 micrograms/ml. Concomitantly, WGA induced a dose-dependent inhibition of 125I-Buserelin specific binding to pituitary cells, with a maximal inhibition of 45%. The inhibition of 125I-Buserelin binding by WGA is due to GnRH receptor internalization and not to persistent occupancy of the receptors. In addition to the effect of WGA on receptor internalization, WGA also induced partial desensitization of pituitary cells but was ineffective in modulating GnRH-induced desensitization. These findings indicate that WGA has all the characteristics of a GnRH antagonist, nevertheless, it does induce desensitization of cultured rat pituitary cells to further stimulation with GnRH.  相似文献   

19.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The present study was conducted to examine effects of a potent GnRH antagonist (GA), which suppresses release of luteinizing hormone (LH), on LH receptor expression during the development of the caprine corpus luteum (CL). Goats were divided into control and GA-treated groups. The goats were treated with saline or GA (50 microg/kg, s.c.) on days 0 (day of ovulation), 4 and 8 (control only), and CL collected on a subset of goats (n = 3 for each day) on days 0 (no saline), 4, 8, or 14 (control only). Ribonuclease protection assay and [(125)I]-hCG binding assay were performed to quantitate mRNA and protein of the LH receptor in the CL, respectively. On day 4, CL weight, levels of LH receptor mRNA and protein in the GA-treated group were similar to those of the control group. By day 8, CL weight and levels of LH receptor mRNA and protein in the GA-treated group were reduced relative to those of the control group (P < 0.05). There was no difference of affinity of the LH receptor between both groups on day 8. These results suggest that the treatment with GA inhibits gene and protein expressions of the LH receptor during the development of CL in the goat, and thus, support an idea that endogenous LH participates in the increase of its own receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号