首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
AIM: To elucidate the interference effect of epigallocatechin-3-gallate (EGCG) on targets of nuclear factor kappaB (NF-kappaB) signal transduction pathway activated by EB virus encoded latent membrane protein 1 (LMP1) in nasopharyngeal carcinoma (NPC) cell lines. METHODS: The survival rates of CNE1 and CNE-LMP1 cell lines after the EGCG treatment were determined by MTT assay. NF-kappaB activation in CNE1 and CNE-LMP1 cells after EGCG treatment was analyzed by promoter luciferase reporter system. And then nuclear translocation of NF-kappaB (p65) after the EGCG treatment was analyzed by immunofluorescence and western blotting. Meanwhile, the changes of IkappaBalpha phosphorylation were observed after the EGCG treatment. EGFR promoter activity was analyzed by promoter luciferase reporter system and EGFR phosphorylation was observed by western blotting after the EGCG treatment. RESULTS: EGCG inhibited the survival rates of CNE1 and CNE-LMP1 cells and NF-kappaB activation caused by LMP1 in CNE-LMP1 cells. EGCG also suppressed the nuclear translocation of NF-kappaB (p65) and IkappaBalpha phosphorylation. Meanwhile, EGCG inhibited EGFR promoter activity and EGFR phosphorylation. CONCLUSIONS: EGCG inhibited not only the dose-dependent survival rate of NPC cells, but also the dose-dependent activation of NF-kappaB. This inhibition of LMP1-caused NF-kappaB activation was mediated via the phosphorylative degradation of its inhibitory protein IkappaBalpha, and then EGCG inhibited EGFR activity which was a downstream gene from NF-kappaB. This study suggests that interference effect of EGCG on targets of signal transduction pathway plays an important role in the anticancer function.  相似文献   

8.
9.
Because the role of nuclear factor kappaB (NF-kappaB) is in cellular growth control and neoplasia, we explored the status of NF-kappaB and investigated its role in survival of human HPV-18 E6-positive HEp-2 cells. We observed accumulation of p65 in the nucleus. Moreover, without any external stimulus constitutive NF-kappaB DNA binding and transactivation activity were detected in HEp-2 cells. Treatment with NF-kappaB inhibitor curcumin (diferuloylmethane) and transient transfection of the mutant form of IkappaBalpha, IkappaBalpha super repressor (IkappaBalpha-SR), suppressed constitutive NF-kappaB activity as well as proliferation, suggesting that constitutive NF-kappaB activity is required for the survival of HEp-2 cells. Carboplatin treatment downregulated constitutive NF-kappaB activity and prevented nuclear retention of p65. Further, carboplatin also suppressed the constitutive IkappaBalpha phosphorylation leading to stabilization of IkappaBalpha protein in the cells. Carboplatin inhibited NF-kappaB binding to its response element present in Bcl-2 promoter resulting in downregulation of antiapoptotic Bcl-2 protein. Thus, our results for the first time indicate that constitutive NF-kappaB has a significant role in the survival of HPV-18 E6-positive HEp-2 cells. Moreover, inactivation of NF-kappaB is one of the mechanisms underlying the induction of carboplatin-mediated apoptosis in HPV-18 E6-positive cancer cells.  相似文献   

10.
The ubiquitin-proteasome pathway (UPP) is involved in the degradation of the extracellular matrix (ECM) and trophoblastic invasion during early pregnancy. Our previous studies demonstrated that inhibition of UPP suppresses expression of matrix metalloproteinase (MMP)-2 and -9. LMP2 is an important proteasome subunit that is critical for proteasome activity. This study investigated the regulatory mechanism of LMP2 on the expression and activities of MMP-2 and MMP-9. Our results showed that transfection of LMP2 siRNA plasmid into the human invasive extravillous trophoblast cell line (HTR8/Svneo) could significantly suppress expression of LMP2 mRNA and protein. The mRNA expression of MMP-2 and MMP-9 and their activities were markedly decreased in the LMP2-inhibited cells. Inhibition of LMP2 could also reduce IkappaBalpha mRNA level, although the expression of phosphorylated IkappaBalpha was increased. In the LMP2-inhibited cells, expression of mRNA encoding NF-kappaB subunits p50 and p65 remained normal, but the p50 protein level was significantly decreased in the cytosolic and nuclear extracts, while p65 protein was markedly reduced only in the nuclear extract. We also demonstrated that blockage of the NF-kappaB pathway by the NF-kappaB translocation inhibitor SN50 markedly reduced the expression of MMP-2 and MMP-9 in HTR8/Svneo cells, a result that is fully consistent with the results from the LMP2-inhibited HTR8/Svneo cells. These data suggest that LMP2 contributes to IkappaBalpha degradation and p50 generation, and that inhibition of LMP2 suppresses expression and activities of MMP-2 and MMP-9 by blocking the transfer of active NF-kappaB heterodimers into the nucleus.  相似文献   

11.
Mature B lymphocytes are unique in containing nuclear Rel proteins prior to cell stimulation. This activity consists largely of p50-c-Rel heterodimers, and its importance for B-cell function is exemplified by reduced B-cell viability in several genetically altered mouse strains. Here we suggest a mechanism for the cell specificity and the subunit composition of constitutive B-cell NF-kappaB based on the observed properties of Rel homo- and heterodimers and IkappaBalpha. We show that c-Rel lacks a nuclear export sequence, making the removal of c-Rel-containing complexes from the nucleus less efficient than removal of p65-containing complexes. Second, the nuclear import potential of p65 and c-Rel homodimers but not p50-associated heterodimers was attenuated when they were complexed to IkappaBalpha, leading to a greater propensity of heterodimers to be nuclear. We propose that subunit composition of B-cell NF-kappaB reflects the inefficient retrieval of p50-c-Rel heterodimers from the nucleus. Cell specificity may be a consequence of c-Rel-IkappaBalpha complexes being present only in mature B cells, which leads to nuclear c-Rel due to IkappaBalpha turnover and shuttling of the complex.  相似文献   

12.
13.
14.
15.
16.
17.
Constitutive NF-kappaB activity has emerged as an important cell survival component of physiological and pathological processes, including B-cell development. In B cells, constitutive NF-kappaB activity includes p50/c-Rel and p52/RelB heterodimers, both of which are critical for proper B-cell development. We previously reported that WEHI-231 B cells maintain constitutive p50/c-Rel activity via selective degradation of IkappaBalpha that is mediated by a proteasome inhibitor-resistant, now termed PIR, pathway. Here, we examined the mechanisms of PIR degradation by comparing it to the canonical pathway that involves IkappaB kinase-dependent phosphorylation and beta-TrCP-dependent ubiquitylation of the N-terminal signal response domain of IkappaBalpha. We found a distinct consensus sequence within this domain of IkappaBalpha for PIR degradation. Chimeric analyses of IkappaBalpha and IkappaBbeta further revealed that the ankyrin repeats of IkappaBalpha, but not IkappaBbeta, contained information necessary for PIR degradation, thereby explaining IkappaBalpha selectivity for the PIR pathway. Moreover, we found that PIR degradation of IkappaBalpha and constitutive p50/c-Rel activity in primary murine B cells were maintained in a manner different from B-cell-activating-factor-dependent p52/RelB regulation. Thus, our findings suggest that nonconventional PIR degradation of IkappaBalpha may play a physiological role in the development of B cells in vivo.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号