首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ex situ germ plasm collections of woody crops are necessary to ensure the optimal use of plant genetic resources. The fig tree (Ficus carica L.) germ plasm bank, consisting of 229 accessions, is located in Centro de Investigación ‘La Orden’. Despite great progress in conservation, ex situ collections face size and organization problems. Core collections obtained from structured samples of bigger collections are a useful tool to improve germ plasm management. In this work, we used simple sequence repeat (SSR) markers to establish a core collection in this underutilised Mediterranean fruit tree species. Four approaches have been carried out (random sampling, maximization, simulated annealing and stepwise clustering) to determine the best method to develop a core collection in this woody plant. The genetic diversity obtained with each subset was compared with that of the complete collection. It was found that the most efficient way to achieve the maximum diversity was the maximization strategy, which, with 30 accessions, recovers all the SSR alleles and does not show significant differences in allele frequency distribution in any of the loci or in the variability parameters (H O, H E) between the whole and core collections. Thus, this core collection, a representative of most fig diversity conserved in the germ plasm bank, could be used as a basis for plant material exchange among researchers and breeders.  相似文献   

2.
Summary As the variation of species is known to be influenced both by ecological and geographical factors, data on the origin of a sample from a given species could be used to infer some of its genetic characteristics. This concept was examined in the context of gene banks, where the assembled diversity usually represents a large range of environments and geographic locations. Results suggest that, although ecological variables in the site of origin can be useful in predicting genetic characteristics in the samples, the use of such data is neither simple nor precise. On the other hand simple geographic data, irrespective of their ecological content, were found to offer an effective method of stratifying and sampling variation in germ plasm collections.  相似文献   

3.
4.
J D Ballou 《Cryobiology》1992,29(1):19-25
Demographic and genetic objectives of captive propagation programs for endangered species focus on establishing demographically secure populations that maintain adequate levels of genetic diversity. Long-term storage and utilization of cryopreserved germ plasm could extend the population's generation length and allow higher levels of genetic variation to be maintained in smaller populations. Since fewer breeding animals would be needed, more species would be "rescued" from extinction using the cage facilities currently available at existing institutions. Doubling generation lengths for callitrichid primates through use of cryopreservation could almost triple the number of species that could be rescued in world zoos. Additionally, long-term cryopreservation would allow for a third population, that of the frozen zoo. Three-way exchange of germ from germ plasm banks to captive and wild populations would increase genetic diversity at reduced risk and expense. Advances in reproductive technology and better understanding of the reproductive physiology of these animal populations are necessary to permit routine application of artificial insemination and embryo transfer using frozen-stored germ plasm.  相似文献   

5.
6.
Germ cells, represented by male sperm and female eggs, are specialized cells that transmit genetic material from one generation to the next during sexual reproduction. The mechanism by which multicellular organisms achieve the proper separation of germ cells and somatic cells is one of the longest standing issues in developmental biology. In many animal groups, a specialized portion of the egg cytoplasm, or germ plasm, is inherited by the cell lineage that gives rise to the germ cells (germline). Germ plasm contains maternal factors that are sufficient for germline formation. In the fruit fly, Drosophila, germ plasm is referred to as polar plasm and is distinguished histologically by the presence of polar granules, which act as a repository for the maternal factors required for germline formation. Molecular screens have so far identified several of these factors that are enriched in the polar plasm. This article focuses on the molecular functions of two such factors in Drosophila, mitochondrial ribosomal RNAs and Nanos protein, which are required for the formation and differentiation of the germline progenitors, respectively.  相似文献   

7.
Summary The Genetic Evaluation and Utilization (GEU) program of the International Rice Research Institute (IRRI) is an interdisciplinary program for the improvement of rice crops. Scientists trained in diverse disciplines such as plant breeding, plant pathology, entomology, agronomy, cereal chemistry, plant physiology, and soil chemistry work together and contribute their specialized skills to this joint endeavor. The program has five interrelated components: (1) germ plasm collection and conservation, (2) research in disciplinary areas, (3) development of improved germ plasm, (4) distribution, evaluation and exchange of germ plasm internationally, (5) training of young scientists.Over forty thousand rice varieties from different countries are being maintained in the IRRI germ plasm bank. These varieties have been screened for grain quality, resistance to various diseases and insects, and tolerance to various environmental stresses such as drought, high and low temperatures and problem soils. Donor parents for resistances to each of the problem areas have been identified. These parents were utilized for developing improved germ plasm. Varieties with resistance to as many as five diseases and five insect species have been developed. These multiple resistant varieties are grown on millions of hectares of rice land. Seeds of improved breeding materials are exchanged internationally and 194 scientists from different countries have been trained in rice improvement work.  相似文献   

8.
Genebank seed accessions of predominantly self-pollinating species may be stored either as bulked (mixed) seed lines or as pure line cultivars. If seed lines are bulked in storage then when considered over several regeneration cycles, loss of genetic diversity within heterogeneous self pollinating genebank accessions is shown to be severe. This within-accession loss of diversity represents opportunities foregone through the random loss of individual genotypes. Amongst working collections, the utility and repeatability of genebank accessions is paramount in the justification of the germ plasm resource. Therefore, the only practical solution to the management of predominantly self-pollinating species is to preserve individual accessions as pure lines.  相似文献   

9.
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.  相似文献   

10.
Maternally supplied germ plasm is essential for germ lineage establishment in many species, but the molecular details are still largely unknown, especially in vertebrates, and identification of novel factors that localize to germ plasm is desirable. We previously reported that one of the components of zebrafish germ plasm is mRNA of the bruno-like (brul) gene, a homologue of bruno, which, in Drosophila, is known to participate in germ lineage establishment. Here, we show that not only mRNA but also protein of brul is localized to the zebrafish germ plasm at the ends of the cleavage furrows. In 4- and 8-cell stage embryos, Brul protein is localized to the periphery of the blastomeres, as well as to the ends of the cleavage furrows, forming numerous minute particles. These particles appear at the cortex of the fertilized egg within 10 min after fertilization. Surprisingly, these distinctive localizations, as well as the minute particles, completely disappeared by the 16-cell stage, although relatively weak expression was detected ubiquitously throughout embryogenesis. This is the first report of a protein that localizes to the germ plasm in zebrafish.  相似文献   

11.
The utilization of exotic germ plasm is difficult due to its non-adaptability. This study investigates the possibility of exotic germ plasm loss during adaptation, and the effect of an additional cross with elite material on the breeding value of exotic x adapted material. The study was conducted on a temperate x highland tropical composite (or pool) developed in order to broaden the genetic variability of maize in north western Europe. The frequency of unique exotic alleles and the isoenzymatic polymorphism at four loci were analysed in the pool itself, in the pool after mild selection, and in the selected pool crossed with elite material. Based on these data, no significant deviation seemed to occur during the mild selection and the cross. The pool and the pool x elite germ plasm cross were evaluated in testcrosses with two complementary testers for both grain and forage production. The pool was later in maturity, more susceptible to lodging, and yielded less than the pool x elite germ plasm crosses for all evaluations. The highest estimates of genetic variance were obtained in the pool for earliness and height traits, and for yield. However, based on the predicted genotypic mean of the selected population, the pool had a lower breeding value than the pool x elite germ plasm cross. The pool x elite germ plasm cross is thus preferred to initiate selection.  相似文献   

12.
通过对福建省建瓯市锥栗种质资源的调查和收集,分析19个锥栗品种的性状,为锥栗的遗传改良、新品种培育提供育种资源,并为锥粟种质资源的开发利用、良种选育提供繁殖材料。  相似文献   

13.
Zhou Y  King ML 《IUBMB life》2004,56(1):19-27
RNA localization is a cellular mechanism used to localize proteins to subcellular domains and to control protein synthesis regionally. In oocytes, RNA localization has profound implications for development, setting up local concentrations of regulatory proteins that will establish regional fates in the future embryo. One such fate is that of the germ cell lineage. In a diverse number of organisms, including Drosophila and Xenopus, the germ cell lineage is determined by the inheritance of germ plasm assembled during oogenesis. This process requires the recruitment of specific RNAs, many now identified, to the germ plasm. Complex signals located in the 3' UTR direct RNAs to their destinations. These signals are sites for protein binding and assembly into particles competent to localize. Three different mechanisms have been described that operate during oogenesis or embryogenesis to localize RNAs in the germ plasm: motor driven transport, differential stability, and entrapment. Each of these localization mechanisms must be coordinated with translation and anchoring mechanisms to achieve functional germ plasms. Here we review what is known about these processes in germ cells, but the cellular mechanisms that select and transport RNAs are likely to be conserved among somatic cells as well.  相似文献   

14.
15.
In zebrafish, primordial germ cells (PGCs) are determined by a specialized maternal cytoplasm, the germ plasm, which forms at the distal ends of the cleavage furrows in 4-cell embryos. The germ plasm includes maternal mRNAs from the germline-specific genes such as vasa and nanos1, and vegetally localized dazl RNA is also incorporated into the germ plasm. However, little is known about the distributions and assembly mechanisms of germ plasm components, especially during oogenesis. Here we report that the germ plasm RNAs vasa, nanos1, and dazl co-localize with the mitochondrial cloud (MC) and are transported to the vegetal cortex during early oogenesis. We found that a mitochondrial cloud localization element (MCLE) previously identified in the 3' untranslated region (3'UTR) of Xenopus Xcat2 gene can direct RNA localization to the vegetal cortex via the MC in zebrafish oocytes. In addition, the RNA-binding protein Hermes is a component of the MC in zebrafish oocytes, as is the case in Xenopus. Moreover, we provide evidence that the dazl 3'UTR possesses at least three types of cis-acting elements that direct multiple steps in the localization process: MC localization, anchorage at the vegetal cortex, and localization at the cleavage furrows. Taken together, the data show that the MC functions as a conserved feature that participates in transport of the germ plasm RNAs in Xenopus and zebrafish oocytes. Furthermore, we propose that the germ plasm components are assembled in a stepwise and spatiotemporally-regulated manner during oogenesis and early embryogenesis in zebrafish.  相似文献   

16.
In Xenopus species, the early stages of oogenesis take place in the developing tadpole ovary when the oocytes are in a period critical for the organization of the germ plasm (believed to be a determinant of germ-cell fate) and the initial stages of localization of RNAs involved in germ plasm functions. We constructed a cDNA library from the ovaries of stage 64 Xenopus tadpoles with the idea that it will be enriched for oogonia and pre-stage I and stage I oocytes and thus, RNAs involved in oocyte development and germ plasm formation and function. From this cDNA library, we cloned a new maternal localized mRNA which we named centroid. This RNA codes for the protein belonging to the DEAD-box RNA helicase family. Some of the members of this protein family are components of the messenger ribonucleoprotein (mRNP) particles stored in the germ plasm in oocytes of Xenopus, Drosophila and Caenorhabditis species and are believed to play a role in translational activation of stored mRNPs and sorting of mRNPs into the germ plasm. We found that centroid mRNA is localized in Xenopus oocytes by a combination of early and late pathways, a pattern of localization that is very similar to the intermediate pathway localization of fatvg mRNA, another germ-plasm-localized RNA in Xenopus oocytes. Also, centroid mRNA is present in the mitochondrial cloud and in the germ plasm at the surface of germinal granules. This suggests that centroid is involved in the regulation of germ plasm-stored mRNPs and/or germ plasm function.  相似文献   

17.
Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus   总被引:2,自引:0,他引:2  
Special cytoplasm, called germ plasm, that is essential for the differentiation of germ cells is localized in a particular region of Caenorhabditis elegans, Drosophila and Xenopus eggs. The mode of founder cell formation of germline, the origin and behavior of the germline granules, and the molecules localized in germline cells are compared in these organisms. The common characteristics of the organisms are mainly as follows. First, the founder cells of germline are established before the intiation of gastrulation. Second, the germline granules or their derivatives are always present in germline cells or germ cells throughout the life cycle in embryos, larvae, and adults. Lastly, among the proteins localized in the germ plasm, only Vasa protein or its homolog is detected in the germline cells or germ cells throughout the life cycle. As the protein of vasa homolog has been reported to be also localized in the germline-specific structure or nuage in some of the organisms without the germ plasm, the possibility that the mechanism for differentiation of primordial germ cells is basically common in all organisms with or without the germ plasm is discussed.  相似文献   

18.
An important question in the conservation of potato germ plasm is whether germ plasm in the gene bank, although stable, still represents the in situ populations from which it was collected, sometimes many decades ago. The answer would direct objective decisions regarding the value of re-collections and in situ preservation. The present study was undertaken as a project of the Association of Potato Inter-gene-bank Collaborators (APIC). It measured genetic differentiation between potato germ plasm maintained in the US gene bank for many years and current in situ populations re-collected from the same original sites in the wild. Solanum jamesii and Solanum ?fendleri from the United States were used as representatives of potato germ plasm. Re-collections were carried out in 1992 at the same locations at which gene bank-conserved accessions had been collected in 1958 and 1978. RAPD markers revealed significant genetic differences between gene bank-conserved and re-collected in?situ populations for all seven comparisons of S. jamesii (diploid outcrosser), and 12 of 16 comparisons within S. ?fendleri (tetraploid inbreeder). The average genetic similarities were 65.2% for S. ?jamesii and 80.4% for S. ?fendleri. Possible explanations and consequences of these unexpectedly large differences are discussed.  相似文献   

19.
Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles.  相似文献   

20.
During the first four cell cycles in Xenopus, islands of germ plasm, initially distributed throughout the vegetal half of the egg cortex, move to the vegetal pole of the egg, fusing with each other as they do so, and form four large cytoplasmic masses. These are inherited by the vegetal cells that will enter the germ line. It has previously been shown that germ plasm islands are embedded in a cortical network of microtubules and that the microtubule motor protein Xklp1 is required for their localization to the vegetal pole [Robb, D., Heasman, J., Raats, J., and Wylie, C. (1996). Cell 87, 823-831]. Here, we show that germ plasm islands fail to localize and fuse in Xklp1-depleted eggs due to the abrogation of the global cytoplasmic movements known as surface contraction waves (SCWs). Thus, SCWs are shown to require a microtubule-based transport system for which Xklp1 is absolutely required, and the SCWs themselves represent a cortical transport system in the egg required for the correct distribution of at least one cytoplasmic determinant of future pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号