首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Perforation plates from ten species of seven genera of Hydrangeales sensu Thorne were studied using scanning electron microscopy (SEM). The presence of pit membranes in perforations ranges from abundant, as in Carpenteria and Hydrangea, to minimal, as in Deutzia, Escallonia and Philadelphus. Abnormally great pit membrane presence may result from the presence of secondary compounds that inhibit lysis, as in Quintinia serrata; such interference with the natural lysis process may or may not be evident from coarseness and irregularity of pit membrane surface and of threads composing the pit membrane remnants. The presence of pit membrane remnants in perforation plates is hypothesized to be a symplesiomorphy, found in a fraction of dicotyledons with scalariform perforation plates (but still in an appreciable number of species). Pit membrane remnant presence may represent incomplete lysis of primary wall material (cellulose microfibrils) in species that occupy highly mesic habitats, where such impedance in the conductive stream does not have an appreciable negative selective value. This physiological interpretation of pit membrane remnants in perforations is enhanced by the phylogenetic distribution as well as the strongly mesic ecological preferences of species that exemplify this phenomenon in dicotyledons at large. Families with pit membrane presence in perforations are scattered throughout phylogenetic trees, but they occur most often in basal branches of major clades (superorders) or as basal branches of orders within the major clades. Further study will doubtless reveal other families and genera in which this phenomenon occurs, although it is readily detected only with SEM. Phylogenetic stages in the disappearance of pit membrane remnants from perforation plates are described, ranging from intact pit membranes except for presence of pores of various sizes, to presence of membrane remnants only at lateral ends of perforations and in one or two perforations (arguably pits) at the transition between a perforation plate and subadjacent lateral wall pitting. Developmental study of the mechanism and timing of lysis of pit membranes in perforations, and assessment of the role of the conductive stream in their removal, are needed to enhance present understanding of vessel evolution. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 146 , 41–51.  相似文献   

2.
Perforation plates from 15 species of 10 genera with scalarifom perforation plates, representing three subfamilies of woody Ericaceae (Rhododendroideae, Arbutoideae, Vaccinioideae) were studied with scanning electron microscopy (SEM). In most of them, pit membrane remnants were present, but these remnants were less extensive than in the ericalean families Clethraceae, Cyrillaceae, and Sarraceniaceae. Pit membrane remnants in perforations of vessels of Ericaceae are characteristically found at lateral ends of the perforations and in perforations (which may alternatively be called pits) transitional to lateral wall pitting. Pit membrane remnants were most extensive in Enkianthus. Phylogenetic and physiological factors for vestigial membrane presence in the perforations are discussed. Helical thickenings on vessel walls as seen with SEM are figured and described for Leucothoe and Pieris, and their significance is assessed.  相似文献   

3.
Perforations of vessel elements characteristically retain remnants of pit membranes (primary walls) in woods of species of more than 30 families of dicotyledons. Scanning electron microscopy is necessary to demonstrate presence and type of membrane remnant. Species with these remnants in perforations given in earlier literature as well as those newly reported here are listed. Perforation membrane remnants may take the form of flakes, strands, or webs, and particular types may characterize particular families (e.g., strands or bands in Illiciaceae). Some families have abundant perforation membrane remnants (e.g., Chloranthaceae, Illiciaceae). Where membranes are nearly intact, they are porose and closely resemble the porose pit membranes on end walls of Tetracentron tracheids. In Tetracentron, however, tracheary elements are monomorphic, so vessel origin cannot yet be said to have occurred. Membrane remnants in perforations are regarded as a relictual primitive feature that should be added to the list of primitive character states claimed for vessel elements in angiosperms; alternative hypotheses are considered and discussed, and evidence from DNA phylogenies is needed. In vessel-bearing dicotyledons with membrane remnants in perforations, many perforations are relatively clear, but an appreciable proportion of perforation plates do have membrane remnants.  相似文献   

4.
Tracheary elements from macerations of roots and stems of one species each of five genera of Araceae subfamily Colocasioideae were studied by means of SEM (scanning electron microscopy). All of the genera have vessel elements not merely in roots, as previously reported for the family as a whole, but also in stems. The vessel elements of stems in all genera other than Syngonium are less specialized than those of roots; stem vessel elements are tracheid-like and have porose pit membrane remnants in perforations. The perforations with pit membrane remnants demonstrate probable early stages in evolution of vessels from tracheids in primary xylem of monocotyledons. The vessel elements with such incipient perforation plates lack differentiation in secondary wall thickenings between perforation plate and lateral wall, and such vessel elements cannot be identified with any reliability by means of light microscopy. The discrepancy in specialization between root and stem vessel elements in genera other than Syngonium is ascribed to probable high conductive rates in roots where soil moisture fluctuates markedly, in contrast with the storage nature of stems, in which selective value for rapid conduction is less. Syngonium stem vessels are considered adapted for rapid conduction because the stems in that genus are scandent. Correlation between vessel element morphology and ecology and habit are supported. Although large porosities in vessel elements facilitate conduction, smaller porosities may merely represent rudimentary pit membrane lysis.  相似文献   

5.
Scanning electron microscopy (SEM) of tracheary elements of roots of five species from four genera of Marattiaceae and of the rhizome of one species revealed vessel elements present in all. The secondary wall framework of perforation plates is the same as that of lateral wall pitting for vessel elements in all species. Thus, no specialization is present in perforation plates of Marattiaceae compared to the simplified morphology of perforation plates of some leptosporangiate ferns (e.g., Dryopteridaceae, Polypodiaceae, and Pteridaceae). The difference between lateral wall pitting and perforation plates in tracheary elements of Marattiaceae cannot be seen by light microscopy (in which pit membranes are transparent), but is evident with SEM. Diversity in structure of perforation plates (especially the alternation of wide and narrow perforations within a plate) and presence of web-like pit membrane remnants are evident. Vessels are widespread in both leptosporangiate and eusporangiate ferns, although specialization in perforation plates (e.g., bars few and more widely spaced in lateral wall pitting of a given vessel element) is to be expected only in ferns of habitats with marked fluctuation in water availability. Vessels of Marattiaceae lack such specializations and are thus are correlated with the mesic habitats characteristic for the family.  相似文献   

6.
Perforation plates are reported in aerial and subaerial axes of Psilotum nudum and in aerial axes of Tmesipteris obliqua. In Psilotum, both perforations lacking pit membranes and perforations with pit membrane remnants were observed. Perforation plates in Psilotum may consist wholly of one type or the other. In Tmespteris, perforations have threadlike pit membranes or consist of porose pit membranes. Wide perforations alternating with narrow pits, a conformation observed in various ferns, were observed in Psilotum (subaerial axes). In Psilotum, perforations are more common in metaxylem than in protoxylem; perforations in protoxylem consist of primary wall areas containing small circular porosities or relatively large circular to oval perforations. There are no modifications in the secondary wall framework of protoxylem or metaxylem in Psilotum or Tmesipteris that would permit one to distinguish presence of perforations or perforation plates with light microscopy, and scanning electron microscopy (SEM) is required for demonstration of porose walls or perforations. The tracheary elements of the Psilotaceae studied have no features not also observed in other ferns with SEM.  相似文献   

7.
SEM studies on vessels in ferns. 11. Ophioglossum   总被引:4,自引:0,他引:4  
With scanning electron microscopy (SEM), the nature of metaxylem vessel elements and tracheids was examined in Ophioglossum crotalophomides, 0. pendulum subsp. falcatum , and 0. vulgatum roots and rhizomes. Vessels were identified in all species. End walls of vessel elements, which bear perforations, are like lateral wall pitting of those elements in the secondary wall framework and differ only in absence of pit membranes or presence of pit membrane remnants. Some of the perforations contain pit membrane remnants that have large pores, small porosities, or are threadlike or weblike in structure. Dimorphic perforations were found in some vessel elements of rhizomes of 0. pendulum subsp. falcatum. Tracheids are very likely present in addition to vessels in all three species. The secondary wall framework of both tracheids and vessels is basically scalariform, although deviations in pattern are present. Vessel elements of Ophiglossum are entirely comparable to those of leptosporangiate ferns.  相似文献   

8.
郑玲    徐皓    王玛丽 《植物学报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示, 这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征, 将该亚科的管状分子分为5种类型: (1)梯状穿孔板, 无穿孔的二型性现象; (2)梯状穿孔板, 有穿孔的二型性现象; (3)网状穿孔板; (4)梯状-网状混合的穿孔板; (5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种: 部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料, 发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异, 管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定, 而应根据穿孔板存在于端壁还是侧壁进行判断, 即穿孔板仅存在于端壁的管状分子为导管分子; 端壁和侧壁形态及结构分别相同, 有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J. Sm.) Ching)与双盖蕨属管状分子的特征并不相似, 显示了将单叶双盖蕨属从双盖蕨属独立出来归入对囊蕨亚科的合理性。根据管状分子的特征, 推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属, 而介蕨属 (Dryoathyrium Ching)相对比较原始, 单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

9.
国产对囊蕨亚科(蹄盖蕨科)植物的管状分子   总被引:2,自引:0,他引:2  
郑玲  徐皓  王玛丽 《植物学通报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示,这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征,将该亚科的管状分子分为5种类型:(1)梯状穿孔板,无穿孔的二型性现象:(2)梯状穿孔板,有穿孔的二型性现象:(3)网状穿孔板:(4)梯状-网状混合的穿孔板:(5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种:部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料,发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异,管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定,而应根据穿孔板存在于端壁还是侧壁进行判断,即穿孔板仅存在于端壁的管状分子为导管分子:端壁和侧壁形态及结构分别相同,有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J.Sm.)Ching)与双盖蕨属管状分子的特征并不相似,显示了将单叶双盖蕨属从双盖蕨属独立出来归人对囊蕨亚科的合理性。根据管状分子的特征,推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属,而介蕨属(Dryoathyrium Ching)相对比较原始,单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

10.
The wood anatomy of 16 of the 37 genera within the epacrids (Styphelioideae, Ericaceae s.l.) is investigated by light and scanning electron microscopy. Several features in the secondary xylem occur consistently at the tribal level: arrangement of vessel-ray pits, distribution of axial parenchyma, ray width, and the presence and location of crystals. The primitive nature of Prionoteae and Archerieae is supported by the presence of scalariform perforation plates with many bars and scalariform to opposite vessel pitting. The wood structure of Oligarrheneae is similar to that of Styphelieae, but the very narrow vessel elements, exclusively uniseriate rays and the lack of prismatic crystals in Oligarrheneae distinguish these two tribes. The secondary xylem of Monotoca tamariscina indicates that it does not fit in Styphelieae; a position within Oligarrheneae is possible. Like most Cosmelieae, all Richeeae are characterized by exclusively scalariform perforation plates with many bars, a very high vessel density and paratracheal parenchyma, although they clearly differ in ray width (exclusively uniseriate rays in Cosmelieae vs. uniseriate and wide multiseriate rays in Richeeae). Several wood anatomical features confirm the inclusion of epacrids in Ericaceae s.l. Furthermore, there are significant ecological implications. The small vessel diameter and high vessel frequency in many epacrids are indicative of a high conductive safety to avoid embolism caused by freeze-thaw cycles, while the replacement of scalariform by simple vessel perforation plates and an increase in vessel diameter would suggest an increased conductive efficiency, which is especially found in mesic temperate or tropical Styphelieae.  相似文献   

11.
Hong-fang Li Yi Ren 《Flora》2011,206(4):310-315
Scanning electron microscope (SEM) is necessary to demonstrate presence or absence of pit membranes in possible perforations or the type of pit membrane remnants in perforations in vessel element end-walls of angiosperms, but it was unconfirmed and questionable whether pit membrane absence in pits was affected by the processing and handling before SEM observations. To solve this question, the secondary xylem of four woody species from primitive angiosperms, Illicium henryi Diels. (Illiciaceae), Schisandra rubriflora (Franch.) Rehd. et Wils. (Schisandraceae), Tetracentron sinensis Oliv. and Trochodendron aralioides Sieb. & Zucc. (Trochodendraceae) was chosen and the following techniques were used: (1) fresh materials were examined in low-vacuum with ESEM. (2) Air-dried materials were examined both in low- and high-vacuum with ESEM. (3) Fresh materials fixed in several different fixatives were observed in low-vacuum, respectively. (4) Smooth surface of the material by paraffin section methods was examined in high-vacuum. (5) Materials treated by Jeffrey's Fluid were observed in high-vacuum.Pit membranes and remnants in perforations of fresh material were little different from that of treated materials. Absence of the pit membrane in perforations (pits) in the end-wall was not attributed to the processing and handling. Information of pit membranes and remnants in perforations in end-wall based on the SEM observation might be validly claimed.  相似文献   

12.
李红芳  张小卉 《广西植物》2018,38(5):665-671
番荔枝科是被子植物基部类群,木兰目中最大的一个科。为了解暗罗属(Polyalthia)的海南暗罗(Polyalthia laui)、假鹰爪属(Desmos)的假鹰爪(Desmos chinensis)、紫玉盘属(Uvaria)的山椒子(Uvaria grandiflora)、瓜馥木属Fissistigma)的瓜馥木(Fissistigma oldhamii)四个种的导管与穿孔板的形态学特征,该研究利用扫描电子显微镜(SEM)对其导管分子及穿孔板形态进行观察,首次展示了这4属4种的导管分子与穿孔板的形态特征,并对其导管的长度与直径进行了分析与比较。结果表明:这四个种导管分子端壁均为单穿孔板,部分穿孔板具尾,不同种在导管与穿孔板形态上具有明显的差异;长度与直径的统计学分析显示其种间差异极显著,导管长度与直径的相关性分析显示其没有相关性。综合导管的形态学特征与统计学分析结果,该研究认为在这四个种中,假鹰爪的导管分子直径与长度变化幅度都不大,长度较短,直径最大,穿孔板平截,不具尾或具小尾,其导管分子处于较高的演化水平。  相似文献   

13.
For the single species of Austmbaileya (Austrobaileyaceae), quantitative and qualitative data are offered on the basis of a mature stem and a root of moderate diameter. Data available hitherto have been based on stems of small to moderate diameter, and roots have not previously been studied. Scanning electron microscope (SEM) photographs are utilized for roots, and show compound starch grains. Roots lack sclerenchyma but have relatively narrow vessels and abundant ray tissue. Recent phylogenies group Austrobaileyaceae with the woody families Illiciaceae, Schisandraceae, and Trimeniaceae (these four may be considered Illiciales), and somewhat less closely with the vesselless families Amborellaceae and Winteraceae and the aquatic families Cambombaceae and Nymphaeaceae. The vessel-bearing woody families above share vessels with scalariform perforation plates; bordered bars on plates; pit membrane remnants present in perforations; lateral wall pitting of vessels mostly alternate and opposite; tracheids and/or septate fibre-tracheids present; axial parenchyma vasicentric (sometimes abaxial); rays Heterogeneous Type I; ethereal oil cells present; stomata paracytic or variants of paracytic. Although comparisons between vessel-bearing and vesselless families must depend on fewer features, Amborellaceae and Winteraceae have no features incompatible with their inclusion in an expanded Illiciales.  相似文献   

14.
猫儿屎导管分子穿孔板新类型的发现   总被引:2,自引:0,他引:2  
运用扫描电镜(SEM)对木通科(Lardizabalaceae)猫儿屎属(Decaisnea Hook.f. & Thoms.)植物猫儿屎[Decaisnea insignis (Griff.) Hook.f.et Thoms.]茎的次生木质部导管分子进行观察,以期为该属的系统演化提供依据.结果表明,猫儿屎的导管分子具有多个穿孔板,端壁穿孔板除了梯状以外,还有梯-网、梯-网-单、梯-单混合穿孔板等类型;侧壁穿孔板包括梯状、网状、梯-网混合状穿孔板;穿孔板上纹孔膜的残余有丝状、网状和片状.同时对导管分子的长度、宽度及端壁倾斜度等特征进行统计,并讨论了木通科各类群的穿孔板特征.  相似文献   

15.
Xylem from roots and rhizomes of two infraspecific taxa of Pteridium aquilinum was studied by means of scanning electron microscopy (SEM). All tracheary elements proved to be vessels. End wall perforation plates were all scalariform, lacked pit membrane remnants in at least the central part of the perforation plate, and varied with respect to width of bars, from wide to tenuous, and with respect to presence of pit membrane remnants. In addition, porose pit membranes on walls that are likely all lateral vessel-to-vessel walls must be considered to be perforations also, although different from those on end walls. Lateral wall perforation plates, hypothesized by one worker on the basis of tylosis presence but denied by another on the basis of light microscopy, were confirmed by demonstration of pores with SEM. In addition, lateral walls of Pteridium vessels bear some grooves interconnecting pit apertures; this feature is newly figured by SEM for ferns. Lateral wall pitting that is not porose may either have striate thickenings of the primary wall or be smooth. Vessel presence and degree of specialization in Pteridium vessels may bear a relationship to the wide ecological tolerances of the genus.  相似文献   

16.
Hong-Fang Li  Shu-Miaw Chaw 《Flora》2011,206(6):595-600
For almost 150 years, the two monotypic genera Trochodendron and Tetracentron (Trochodendraceae) have been considered to share an unusual and primitive feature in angiosperms - the lack of vessels in their wood. Therefore, they have been classified in a basal position in the angiosperms. Our observations by light microscopy, low-vacuum environmental scanning electron microscopy (ESEM) and high-vacuum scanning electron microscopy (SEM) both in fresh and FAA-fixed materials consistently showed the presence of tracheary elements differentiated into two types in both genera. In Trochodendron, the tracheary elements can be divided into perforate vessel elements and imperforate fiber-tracheids and tracheids. The vessel elements show end and lateral walls. The pits on the end walls are elongate- broadened and do not have membranes or only a few remnants of them forming the perforation plates. The fiber-tracheids show crossfield pit pairs and sharp ends, and the tracheids show bordered pits. In Tetracentron, the tracheary elements comprise vessel elements and fibers. The vessel elements are similar to those of Trochodendron, whereas the fibers have no crossfield pit pairs but, rather, elliptical pits and sharp ends. Thus, both Trochodendron and Tetracentron are vessel bearing rather than vesselless, although their vessel elements are primitive.  相似文献   

17.
SEM studies of roots and rhizomes of Triglochin (one species) and Maundia (monotypic) of Juncaginaceae and the sole species of Scheuchzeriaceae, Scheuchzeria palustris, reveals that vessels are present not only in roots, as previously reported, but also in rhizomes. The perforations contain pit membranes with pores of various sizes. Striate pit membranes, like those previously seen in Acorus, occur on pit remnants in peforations and on pit membranes of lateral walls in all genera studied. Grooves interconnecting pit apertures are illustrated for root tracheary elements of Triglochin; this is believed to be a first report of this feature for monocotyledons. The tracheary elements of Juncaginaceae and Scheuchzeriaceae are similar in their thick walls and narrow slitlike pits, lending support to the close relationship between the two families often claimed.  相似文献   

18.
We have studied macerated xylem of ferns, supplemented by sections, by means of scanning electron microscopy (SEM) in a series of 20 papers, the results of which are summarized and interpreted here. Studies were based mostly on macerations, but also on some sections; these methods should be supplemented by other methods to confirm or modify the findings presented. Guidelines are cited for our interpretations of features of pit membranes. Fern xylem offers many distinctive features: (1) presence of numerous vessels and various numbers of tracheids in most species; (2) presence of vessels in both roots and rhizomes in virtually all species; (3) presence of specialized end walls in vessels of only a few species; (4) multiple end-wall perforation plates in numerous species; (5) lateral-wall perforation plates in numerous species; (6) porose pit membranes associated with perforation plates in all species; and (7) pit dimorphism, yielding wide membrane-free perforations alternating with extremely narrow pits. Multiple end wall perforation plates and lateral wall perforation plates are associated with the packing of tracheary elements in fascicles in ferns: facets of tips of elements contact numerous facets of adjacent elements; all such contacts are potential sites for conduction by means of perforations. This packing differs from that in primary xylem of dicotyledons and monocotyledons. Porosities in pit membranes represent a way of interconnecting vessel elements within a rhizome or root. In addition, these porosities can interconnect rhizome vessel elements with those of roots, a feature of importance because roots are adventitious in ferns as opposed to those of vascular plants with taproots. Fully-formed or incipient (small-to-medium sized porosities in pit membranes) perforation plates are widespread in ferns. These are believed to represent (1) ease of lysis of pit membranes via pectinase and cellulase; (2) numerous potential sites for perforation plate formation because of fasciculate packing of tracheary elements; (3) evolution of ferns over a long period of time, so that lysis pathways have had time to form; (4) lack of disadvantage in perforation plate presence, regardless of whether habitat moisture fluctuates markedly or little, because ferns likely have maintaining integrity of water columns that override the embolism-confining advantage of tracheids. Although all ferns share some common features, the diversity in xylem anatomy discovered thus far in ferns suggests that much remains to be learned.  相似文献   

19.
洋蒲桃次生木质部中导管分子的解剖学   总被引:6,自引:0,他引:6  
陈树思 《植物学通报》2006,23(6):677-683
运用细胞图像分析系统和显微照相的方法对洋蒲桃(Syzygium samarangense)次生木质部导管分子进行了观察研究。次生木质部导管分子类型有:两端具尾导管、一端具尾导管和无尾导管。导管分子穿孔板存在着4种类型:两端均为具2个单穿孔的复穿孔板;一端为1个单穿孔板,另1端为具2个单穿孔的复穿孔板;两端均为单穿孔板:两单穿孔板位于同一端壁两侧相互对应以及一些过渡类型穿孔板。根据观察结果,分析了各类型穿孔板之间的演化关系。  相似文献   

20.
Quantitative and qualitative data are presented for woods of 30 species of woody Polygonaceae. Wood features that ally Polygonaceae with Plumbaginaceae include nonbordered perforation plates, storeying in narrow vessels and axial parenchyma, septate or nucleate fibres, vasicentric parenchyma, pith bundles that undergo secondary growth, silica bodies, and ability to form successive cambia. These features are consistent with pairing of Plumbaginaceae and Polygonaceae as sister families. Wood features that ally Polygonaceae with Rhabdodendraceae include nonbordered perforation plates, presence of vestured pits in vessels, presence of silica bodies and dark-staining compounds in ray cells, and ability to form successive cambia. Of the features listed above, nonbordered perforation plates and ability to form successive cambia may be symplesiomorphies basic to Caryophyllales sensu lato . The other features are more likely to be synapomorphies. Wood data thus support molecular cladograms that show the three families near the base of Caryophyllales s.l. Chambered crystals are common to three genera of the family and may indicate relationship. Ray histology suggests secondary woodiness in Antigonon, Atraphaxis, Bilderdykia, Dedeckera, Eriogonum, Harfordia, Muehlenbeckia, Polygonum , and Rumex . Other genera of the family show little or no evidence of secondary woodiness. Molecular data are needed to confirm this interpretation and to clarify the controversial systematic groupings within the family proposed by various authors. Vessel features of Polygonaceae (lumen diameter, element length, density, degree of grouping) show an extraordinary range from xeromorphy to mesomorphy, indicating that wood has played a key role in ecological and habital shifts within the family; the diversity in ecology and habit are correlated with quantitative wood data.  © 2003 The Linnean Society of London. Botanical Journal of the Linnean Society , 2003, 141 , 25−51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号