首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0–17·9), polyhaline (salinity: 18·0–29·9) or euhaline (salinity: 30·0–39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0–100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role.  相似文献   

2.
The Waterloo Farm lagerstätte in South Africa provides a uniquely well‐preserved record of a Latest Devonian estuarine ecosystem. Ecological evidence from it is reviewed, contextualised, and compared with that available from the analogous Swartvlei estuarine lake, with a particular emphasis on their piscean inhabitants. Although the taxonomic affinities of the estuarine species are temporally very different, the overall patterns of utilisation prove to be remarkably congruent, with similar trophic structures. Significantly, both systems show evidence of widespread use of estuaries as fish nurseries by both resident and marine migrant taxa. Holocene estuaries are almost exclusively utilised by actinopterygians which are overwhelmingly dominated by oviparous species. Complex strategies are utilised by estuarine resident species to avoid exposure of eggs to environmental stresses that characterize these systems. By contrast, many of the groups utilising Devonian estuaries were likely live bearers, potentially allowing them to avoid the challenges faced by oviparous taxa. This may have contributed to dominance of these systems by non‐actinoptergians prior to the End Devonian Mass Extinction. The association of early aquatic tetrapods at Waterloo Farm with a fish nursery environment is consistent with findings from North America, Belgium and Russia, and may be implied by the estuarine settings of a number of other Devonian tetrapods. Tetrapods apparently replace their sister group, the elpistostegids, in estuaries with both groups having been postulated to be adaptated to shallow water habitats where they could access small piscean prey. Correlation of tetrapods (and elpistostegids) with fish nursery areas in the Late Devonian lends strong support to this hypothesis, suggesting that adaptations permitting improved access to the abundant juvenile fish within the littoral zone of estuarine lakes and continental water bodies may have been pivotal in the evolution of tetrapods.  相似文献   

3.
Data on the species compositions and the ages, sizes, reproductive biology, habitats and diets of the main species in the ichthyofaunas of seven estuaries in temperate southwestern Australia have been collated. Twenty-two species spawn in these estuaries, of which 21 complete their lifecycles in the estuary. The latter group, which includes several species of atherinids and gobies with short lifecycles, make far greater contributions to the total numbers of fish in the shallows of these estuaries than in those of holarctic estuaries, such as the Severn Estuary in the United Kingdom. This is presumably related in part to far less extreme tidal water movements and the maintenance of relatively high salinities during the dry summers, and thus to more favourable conditions for spawning and larval development. However, since estuaries in southwestern Australia have tended to become closed for periods, there would presumably also have been selection pressures in favour of any members of marine species that were able to spawn in an estuary when that estuary became landlocked. Furthermore, the deep saline waters, under the marked haloclines that form in certain regions during heavy freshwater discharge in winter, act as refugia for certain estuarine species. The contributions of estuarine-spawning species to total fish numbers in the shallows varied markedly from 33 or 34% in two permanently open estuaries to ≥ 95% in an intermittently open estuary, a seasonally closed estuary and a permanently open estuary on the south coast, in which recruitment of the 0 + age class of marine species was poor. The larger estuarine species can live for several years and reach total lengths of ~ 700 mm and some estuarine species move out into deeper waters as they increase in size. Several marine species use southwestern Australian estuaries as nursery areas for protracted periods. However, sudden, marked increases in freshwater discharge in winter and resultant precipitous declines in salinity in the shallows, and in other regions where haloclines are not formed, are frequently accompanied by rapid and pronounced changes in ichthyofaunal composition, partly due to the emigration of certain marine species. In contrast, the ichthyofaunal compositions of macrotidal holarctic estuaries undergo annual, cyclical changes, due largely to the sequential entry of the juveniles of different marine species for short periods. The ichthyofaunal compositions of the narrow entrance channels, wide basins and saline riverine reaches of large, permanently open southwestern Australian estuaries vary, reflecting the marked tendency for some species to be restricted mainly to one or two of these regions. Comparative data indicate that the characteristics determined for ichthyofaunas in southwestern Australian estuaries apply in general to estuaries elsewhere in temperate Australia.  相似文献   

4.
New and published data have been collated for the biology and distribution of atherinid species abundant in the coastal saline waters of Australia below 30°S. This information has been used to determine whether these species typically spawn at sea or pass through the whole of their life cycle in estuaries, and in one case, also lagoons and saline lakes. Length-frequency data, gonadosomatic indices and distribution records indicate that in south-eastern AustraliaCraterocephalus honoriae andAtherinosoma microstoma typically reach total lengths less than 90 mm, have a one-year life cycle and breed within estuaries. This parallels the situation recently described forAtherinosoma elongata, Atherinosoma wallacei andAllanetta mugiloides in south-western Australia (Princeet al., 1982a; Prince & Potter, 1983). The marine speciesAtherinosoma presbyteroides, which reaches a similar size and has a one year life cycle in both south-western and south-eastern mainland Australia, only enters estuaries in large numbers in the former region. WhileAtherinomorus ogilbyi is also found in estuaries and typically breeds at sea, it reaches total lengths as great as 189 mm and has a longer life thanA. presbyteroides. The limited data forAtherinason esox andAtherinason hepsetoides demonstrate that both these marine atherinids can attain total lengths of 139 and 108 mm respectively and live for longer than a year but do not enter estuaries in large numbers. The latter species is unique amongst southern Australian atherinids in having a distribution which extends into deeper water. It is suggested that landlocking may have played a role in the evolution and success of the estuarine mode of lifesensu stricto ofA. wallacei, A. elongata, A. microstoma, A. honoriae andA. mugiloides in southern Australian waters.  相似文献   

5.
Incorporation of strontium into otoliths of an estuarine fish   总被引:1,自引:0,他引:1  
Patterns of Sr/Ca variability in fish otoliths have been widely applied as tracers of movement between freshwater and marine habitats, with the assumption that low salinity habitats correspond to lower otolith levels of Sr/Ca. On the other hand, fluvial estuaries can contain steep gradients in Sr/Ca, and in some estuaries, freshwater values of Sr/Ca can exceed marine values, which are relatively constant across marine habitats. Therefore, to interpret Sr/Ca variability in otoliths of fish that move through estuaries, information is needed about both the incorporation of strontium into otoliths and the nature of the gradient of Sr/Ca in the water. We conducted four experiments to evaluate the incorporation of strontium into fish otoliths under estuarine conditions, using white perch (Morone americana) as a model estuarine fish. One laboratory and the two field experiments tested the relationship between Sr/Ca in the otolith and that in the water. A fourth experiment investigated the effect of salinity, independently of the water chemistry (Sr was manipulated while maintaining a constant salinity and Ca level). All four experiments supported a direct relationship between Sr/Ca in the otolith and the water, across a range of estuarine salinities. Results also indicated that the incorporation of strontium into otoliths of estuarine fishes should be constant across broad gradients of Sr/Ca in estuarine waters. While the experiments supported past applications of tracing estuarine and diadromous movements with otolith Sr/Ca chronologies, we emphasize the need to understand the underlying nature of Sr/Ca gradients in estuaries, which may limit or confound reconstructions of estuarine habitat use.  相似文献   

6.
The literature currently recognizes four guilds of estuarine resident fish species, namely solely estuarine, estuarine and marine, estuarine and freshwater, and estuarine migrant. In this review the life cycles of actual representatives from these four guilds are assessed to determine whether the current definitions, which have never been formally tested, are appropriate to fish species resident in South African estuaries. Detailed information and diagrammatic life cycles are provided for the selected species covered by this review. A potential new estuarine resident guild category is also identified, namely, those taxa that are primarily estuarine but also have subpopulations recorded in both adjacent marine and freshwater habitats. The full range of reproductive characteristics employed by estuary resident species is examined, ranging from live bearers, pouch and nest brooders, to a suite of oviparous taxa that attach their ova to estuarine rocks, shells, and submerged vegetation, all of which assists with larval retention within the estuarine environment. The small size and early reproductive maturity of most estuarine resident species is highlighted, with reduced vulnerability to predation in shallow, sheltered, often turbid estuary waters offering considerable protection during spawning events when compared to the open ocean. In addition, these small fish would not have to move considerable distances at any stage of their life cycle, since egg, larval, juvenile, and adult stages all occur in the same place. The existence of contingent subpopulations within many estuarine resident species is noted, physico-chemical stresses on these species are highlighted, and the eurytopic nature of these small fish taxa emphasized.  相似文献   

7.
Estuarine habitats, and the fish assemblages associated with them, are potentially impacted upon by many anthropogenic influences which can have a direct influence on the food resources, distribution, diversity, breeding, abundance, growth, survival and behaviour of both resident and migrant fish species. The direct and indirect coupling between ichthyofaunal communities and human impacts on estuaries reinforces the choice of this taxonomic group as a biological indicator that can assist in the formulation of environmental and ecological quality objectives, and in the setting of environmental and ecological quality standards for these systems. This review examines the rationale and value of selecting fishes as bio-indicators of human induced changes within estuaries, using examples from both the northern and southern hemispheres. The monitoring of estuarine 'health' using fish studies at the individual and community level is discussed, with an emphasis on the potential use of estuarine fishes and their monitoring and surveillance in national and international management programmes. In illustrating the above concept, examples are presented of the way in which fishes are threatened by anthropogenic impacts and of the way in which teleosts can contribute to a monitoring of estuarine ecosystem health.  相似文献   

8.
Synopsis The ichthyofauna of southern African estuaries consists primarily of juvenile marine species that use these habitats as nursery areas. The abundance and biomass of fishes in estuarine systems are typically high but species diversity is generally low, with only a few taxa dominating the community. This relatively low species diversity is attributed to the fact that estuaries in the region are unpredictable environments which lack any degree of permanence and are dominated by mobile marine eurytopes. Although stenotopes, represented mainly by small resident species from the families Gobiidae, Clinidae and Syngnathidae, are present in southern African estuaries, little speciation appears to have occurred. A possible reason for this lack of speciation, apart from the seasonal and annual variability of the abiotic environment, is that the lifetime of individual systems is usually limited to a few thousand years. In addition, fishes utilising southern African estuaries need to remain flexible (eurytopic) in their responses to an external environment which is unlikely to become more stable in the future. Thus the lack of permanence and fluctuating nature of southern African estuaries on both a spatial and temporal scale, together with the dominance of eurytopes in these systems, does not favour the evolution of new species. A preliminary examination of the available literature indicates that a detailed review of estuarine ichthyofaunal communities on a global basis will probably mirror the trends outlined above, and reveal a domination of these dynamic ecosystems by eurytopic taxa with low speciation potential.  相似文献   

9.
Tropical estuarine areas comprise small systems of a few km, larger estuaries, coastal lakes of hundreds of km 2 and vast shallow coastal waters that are contiguous with estuaries and have similar reduced salinities. Many of the world's great estuaries are in the tropics, e.g. the Amazon, Orinoco, Congo, Zambezi, Niger, Ganges and Mekong. The distribution of tropical and subtropical estuaries approximately follows that of mangroves. Like estuaries everywhere, they are a focus of human activity and are among the most exploited of ecosystems. In few other places do the activities of fishers, industrialists, shippers, farmers, conservationists, sports enthusiasts and biologists overlap to such an extent. Quite apart from the possible eects of all these activities, the fishes of subtropical and tropical estuaries already face one of the most rigorous of aquatic environments; but despite this, species diversity and productivity are high. Only in tropical estuaries are animals from such a wide range of taxa so closely associated, annelid worms, prawns, crocodiles, birds, ' hippos ', dolphins and of course fishes, all may form part of the overall community, often with functional ecological links. Unfortunately, the diculties of working in these often inhospitable environments, has meant that biologists have favoured projects in more appealing areas, such as coral reefs. While it is still true that most estuarine research is conducted in industrialized developed countries, nearly all of which are in cold or temperate regions, there has been a recent upsurge in tropical estuarine fish research. This is being driven by two imperatives, food security and the conservation and maintenance of biodiversity. Both these problems require knowledge of the ecology of tropical estuarine fishes, particularly their relationships with the environment and the extent to which they are dependent on estuaries or adjacent habitats for survival.  相似文献   

10.
Ammonia in estuaries and effects on fish   总被引:3,自引:0,他引:3  
This review aims to explore the biological responses of fish in estuaries to increased levels of environmental ammonia. Results from laboratory and field studies on responses of fish to varying salinity and their responses increased ammonia will be evaluated, although studies which examine responses to ammonia, in relation to varying salinity, pH and temperature together are rare. In a survey of British estuaries the continuous measurement of total ammonia showed values that ranged from background levels increasing up to c. 10 mg N l?1 although higher values have been noted sporadically. In outer estuaries pH values tended to stabilize towards sea water values (e.g. c. pH 8). Upper reaches of estuaries are influenced by the quality of their fresh waters sources which can show a wide range of pH and water quality values depending on geological, climatic and pollution conditions. In general the ammonia toxicity (96 h LC50) to marine species (e.g. 0·09–3·35 mg l?1 NH3) appears to be roughly similar to freshwater species (e.g. 0·068–2·0 mg l?1 NH3). Ammonia toxicity is related to differences between species and pH rather than to the comparatively minor influences of salinity and temperature. In the marine environment the toxicity of ionized ammonia should be considered. The water quality standard for freshwater salmonids of 21 μg l?1 NH3–N was considered to be protective for most marine fish and estuarine fish although the influence of cyclical changes in pH, salinity and temperature were not considered. During ammonia exposures, whether chronic or episodic, estuarine fish may be most at risk as larvae or juveniles, at elevated temperatures, if salinity is near the seawater value and if the pH value of the water is decreased. They are also likely to be at risk from ammonia intoxication in waters of low salinity, high pH and high ammonia levels. These conditions are likely to promote ammonia transfer from the environment into the fish, both as ionized and unionized ammonia, as well as promoting ammonia retention by the fish. Fish are more likely to be prone to ammonia toxicity if they are not feeding, are stressed and if they are active and swimming. Episodic or cycling exposures should also be considered in relation to the rate at which the animal is able to accumulate and excrete ammonia and the physiological processes involved in the transfer of ammonia. In the complex environment of an estuary, evaluation of ammonia as a pollutant will involve field and laboratory experiments to determine the responses of fish to ammonia as salinity and temperature vary over a period of time. It will also be necessary to evaluate the responses of a variety of species including estuarine residents and migrants.  相似文献   

11.
The small, typically estuarine fish Atherina boyeri Risso forms local populations which can differ greatly in their population biology and morphology; this species is viewed as being on the brink of speciation. This analysis of the reproductive strategy shows that A. boyeri can rapidly adapt its life history and morphology to environments ranging from freshwater to polyhaline coastal lagoons and oceanic waters. The optimum strategy is shown to be tied to temperate seasonality: the cold winters act to lengthen the life cycle, and result in cyclic switching of energy between reproduction, somatic growth and fat storage. The adaptability of the fish to a range of environmental characters is viewed as being due to natural selection acting to produce a genotype capable of a flexible phenotypic response. This flexibility is essential for survival in the highly variable inshore/brackish habitat. It is argued that such preadaptive plasticity, coupled with the potential for populations to become isolated, produces ideal conditions for speciation. The importance of the coastal, estuarine and lagoonal environment as a springboard for teleost evolution is discussed.  相似文献   

12.
H. Postma 《Aquatic Ecology》1974,8(1-2):40-45
Conclusions The purpose of this paper was to show that the hydrochemistry of brackish waters is closely connected with the hydrographic conditions of these waters and that chemical transformations in estuaries may exert an influence on open ocean waters. It has also been shown that many of the processes involved need a much more detailed study. Obviously we know far too little about the transformations of organic matter in estuaries and we can only guess about the changes of many inorganic chemical species.Studies of the estuarine environment have a great urgency, since conditions are rapidly modified by pollution. In many rivers the input of organic matter from sewage and of inorganic materials from industrial processes has greatly increased. Even now already it is very doubtful whether a study of the river Rhine, for example, is still useful from a geochemical point of view. It may of course, be important as a basis for the prevention of further pollution, but for geochemical processes studies in unpolluted rivers will be much more significant.It is also necessary to study many brackish water environments because of their great variability and since one environment provides an insight that the other does not.  相似文献   

13.
Summary

A review of the conservation status of fish in the estuarine environment around the South African coastline reveals that some species face serious problems associated either with habitat destruction, and its associated biological, physical and chemical components or exploitation. The 65 species considered fall into three categories; truly estuarine species, which are dependent on estuaries for their entire life; marine species dependent on estuaries during the juvenile phase of their life cycle; and marine species whose juveniles occur mainly in estuaries but are also found at sea. Included in the first two categories are 14 species of fish which are on the South African Red Data list. These comprise one species which is endangered, five which are vulnerable and eight which are rare. All groups are considered in relation to factors in estuaries which are affecting their populations. A conservation strategy is suggested for certain estuarine types or for specific estuaries which could ensure the survival of the entire range of estuarine faunas.  相似文献   

14.
Rocky reef habitat is common in many estuaries, yet its role as a habitat for fishes is poorly understood. There is also limited understanding of how access of coastal species into estuaries and habitat quality can affect the distribution of rocky reef fishes within estuaries. This study used baited remote underwater video stations to determine spatial patterns in fish assemblages associated with rocky reef habitat throughout a barrier estuary with a permanently open but restricted inlet. Estuarine rocky reefs provided habitat for a diverse assemblage of fishes, many of which were large juveniles and subadults. In the absence of a pronounced salinity or temperature gradient, a clear transition in fish assemblages occurred from coastal waters, through the inlet channel, to the central estuary, and into the inner estuary. The inlet channel, notably its narrowness and length, limits tidal input into this estuary, which acts as a significant impediment to the dispersal of many coastal fishes, and insufficient habitat excludes many coastal rocky reef species from the inner estuary. This study highlights the need to recognise estuarine rocky reefs as providing habitat for diverse fish assemblages and the role inlets play in restricting access of coastal species.  相似文献   

15.
Synopsis Some 190 South African estuaries, covering all biogeographic provinces within the region, were classified into three types based on a combination of mouth condition and estuary size (surface area). The fish communities of the estuary types within each zoogeographic region were described and compared. Multivariate analyses revealed that each estuary type contained somewhat distinct fish communities. In addition, the study identified common patterns in species richness and ichthyofaunal composition. Open estuaries have relatively high species richness; this is a reflection of a permanent or near-permanent connection with the sea which allows access into these estuaries by all marine migrant species within the region. Intermittent connection with the sea limits the recruitment and utilisation of closed estuaries by marine migrant species; this results in reduced species richness in moderate to large closed estuaries. Small closed estuaries exhibit the lowest species richness and this is probably a result of their limited habitat and increased isolation from the sea. The key fishes that utilise estuaries could also be categorised into a number of groups based on their relative importance within each estuary type. Some species are largely restricted to predominantly open systems. Other taxa, while important in predominantly open estuaries, also occur in moderate to large closed systems. Some estuarine-associated species are well represented in all estuary types but exhibit a greater importance in closed estuaries. This study has shown that South African fish communities not only reflect estuarine typology but also respond to these differences in a consistent manner that spans all zoogeographic regions. The prevalence of similar patterns in other parts of the world suggests that estuarine typology is a major driver in the structuring of global estuarine fish communities.  相似文献   

16.
Synopsis Fish utilizing South African estuaries may be divided into two major groups according to the location of their spawning sites. The marine group comprises large species which spawn at sea, enter estuaries mainly as juveniles, and return to the sea prior to attaining sexual maturity. The estuarine group is dominated by small species which have the ability to complete their life cycle within the estuarine environment. They tend to produce relatively few, demersal eggs, or exhibit parental care, which facilitates the retention of eggs and young within the estuary, whereas the marine group release large numbers of small pelagic eggs during spawning and exhibit no parental care. This is contrary to the theory that estuaries (unpredictable environments) should favour altricial life-history styles and the marine inshore zone (a more predictable environment) should favour precocial styles. However, if the total ichthyofauna of South African estuaries is considered, then altricial species predominate. The fact that both altricial and precocial traits are well represented within the overall estuarine fish community suggests that the various taxa have adapted their life-history styles, in different ways, to ensure the utilization of abundant food resources available within these fluctuating systems. A detailed comparison of the life-history styles of the estuarine teleostGilchristella aestuaria and the marine fishMugil cephalus is used to illustrate the contrasting manner in which these two species have succeeded in exploiting South African estuaries.  相似文献   

17.
The Research Institute for Nature and Forest (INBO) has been performing standardized fish stock assessments in Flanders, Belgium. This Flemish Fish Monitoring Network aims to assess fish populations in public waters at regular time intervals in both inland waters and estuaries. This monitoring was set up in support of the Water Framework Directive, the Habitat Directive, the Eel Regulation, the Red List of fishes, fish stock management, biodiversity research, and to assess the colonization and spreading of non-native fish species. The collected data are consolidated in the Fish Information System or VIS. From VIS, the occurrence data are now published at the INBO IPT as two datasets: ‘VIS - Fishes in inland waters in Flanders, Belgium’ and ‘VIS - Fishes in estuarine waters in Flanders, Belgium’. Together these datasets represent a complete overview of the distribution and abundance of fish species pertaining in Flanders from late 1992 to the end of 2012. This data paper discusses both datasets together, as both have a similar methodology and structure. The inland waters dataset contains over 350,000 fish observations, sampled between 1992 and 2012 from over 2,000 locations in inland rivers, streams, canals, and enclosed waters in Flanders. The dataset includes 64 fish species, as well as a number of non-target species (mainly crustaceans). The estuarine waters dataset contains over 44,000 fish observations, sampled between 1995 and 2012 from almost 50 locations in the estuaries of the rivers Yser and Scheldt (“Zeeschelde”), including two sampling sites in the Netherlands. The dataset includes 69 fish species and a number of non-target crustacean species. To foster broad and collaborative use, the data are dedicated to the public domain under a Creative Commons Zero waiver and reference the INBO norms for data use.  相似文献   

18.
Physicochemical variability in estuarine systems plays an important role in estuarine processes and in the lifecycles of estuarine organisms. In particular, seasonality of freshwater inflow to estuaries may be important in various aspects of fish lifecycles. This study aimed to further understand these relationships by studying the movements of a top-level estuarine predator in response to physicochemical variability in a large, temperate south-east Australian estuary (Shoalhaven River). Mulloway (Argyrosomus japonicus, 47–89 cm total length) were surgically implanted with acoustic transmitters, and their movements and migrations monitored over two years via fixed-position VR2W acoustic receivers configured in a linear array along the length of the estuary. The study period included a high degree of abiotic variability, with multiple pulses (exponentially high flows over a short period of time) in fresh water to the estuary, as well as broader seasonal variation in flow, temperature and conductivity. The relative deviation of fish from their modal location in the estuary was affected primarily by changes in conductivity, and smaller fish (n = 4) tended to deviate much further downstream from their modal position in the estuary than larger fish (n = 8). High-flow events which coincided with warmer temperatures tended to drive mature fish down the estuary and potentially provided a spawning signal to stimulate aggregation of adults near the estuary mouth; however, this relationship requires further investigation. These findings indicate that pulse and press effects of freshwater inflow and associated physicochemical variability play a role in the movements of mulloway, and that seasonality of large freshwater flows may be important in spawning. The possible implications of river regulation and the extraction of freshwater for consumptive uses on estuarine fishes are discussed.  相似文献   

19.
The effects of suspensoids on fish   总被引:1,自引:1,他引:0  
M. N. Bruton 《Hydrobiologia》1985,125(1):221-241
High suspensoid loads are a common feature of many Southern Hemisphere inland waters. Case studies on a natural lake (Chilwa), a man-made lake (Le Roux) and S.W. Indian Ocean estuaries reveal that the effects of turbidity on fish in these systems differ widely. In Lake Le Roux, high suspensoid loads influence fish by causing a reduced growth rate, a decrease in size at first maturity and maximum size, and a movement inshore by large fishes to feed on phytobenthos. High turbidities in Lake Chilwa sharply reduce food availability in benthic offshore zones, and restrict fishes to pelagic and inshore food resources. The resuspension of sediments by wind action may cause fish mortalities through deoxygenation of the water column. Moderate turbidity levels appear to be beneficial to fish in estuaries by affording protection from predators in shallow, food-rich areas. Turbidity gradients may also provide a navigational aid to fish entering estuaries.While ecological studies on Southern Hemisphere inland waters are fairly advanced, experimental work is restricted. Such research in the Northern Hemisphere has revealed that high suspensoid loads may influence breeding success, egg and larval survival, population structure and size, as well as food availability and feeding efficiency. The effect of suspensoids on the breeding success and feeding efficiency of Southern Hemisphere fish needs further investigation.Moderate suspensoid loads are a natural feature of many inland waters, but sustained high levels reduce the photic zone, blanket the benthos and interfere with the feeding efficiency of fish. The curtailment of soil erosion should therefore be regarded as a priority in the management of inland fisheries, especially in Third World countries where poor land-use practises have resulted in a marked deterioration of water quality. The need to study and manage river catchments holistically is emphasized.  相似文献   

20.
Between-year variation in bass Dicentrarchus labrax year-class strength in southern British waters is investigated. Mean spring-summer seawater temperature in the year of birth was significantly positively correlated with both the level of summer recruitment of the 0 + group to the estuarine nurseries and subsequent recruitment of III + fish to the adult population. Spectral analysis of the temperature-compensated time series showed that a statistically significant proportion of the variation not attributable to temperature was periodic at 0–33 cycles year−1. Therefore, a simple, three-parameter model, combining a linear relationship between temperature and abundance and a second-order autoregressive model can be used to describe and predict variation in relative adult YCS. Bass remain for their first 3 years within their estuarine nursery areas. As I + fish were observed in Southampton water to cannibalize the 0 + group, it is suggested that strong year-classes suppress recruitment for the next 2 years even if the temperature is suitable to promote a strong year-class. Cyclic variation in recruitment caused by intraspecific interactions, particularly cannibalism, may be a feature of other marine fish that use estuaries as nursery areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号