首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
African mole rats (Bathyergidae) offer an excellent system with which to test theories relating to the evolution and maintenance of sociality in mammals. The aridity food distribution hypothesis (AFDH) suggests that, within the bathyergids, sociality has evolved in response to patterns of rainfall, its effects on food distribution, and the subsequent costs and risks of foraging and dispersal. Here, in the first detailed study of burrow architecture in a social mole-rat species, with data from 32 burrows, we show that in the giant mole-rat Fukomys mechowii burrow fractal dimension increases with colony size and is higher during the rainy season than during the dry season. The mass of food in the burrow increases with fractal dimension and is higher during the rainy season than during the dry season. These results link for the first time colony size, burrow architecture, rainfall and foraging success and provide support for two assumptions of the AFDH, namely that (1) in arid conditions burrowing may be severely constrained by the high costs of digging; and (2) the potential risks of failing to locate food may be mitigated by increases in colony size.  相似文献   

2.
We used the comparative method to examine the evolutionary causesof group-living in the New World cursorial hystricognath rodents.To do so, we used the available literature to collect informationon behavioral (group size, burrow digging), ecological (amountof plant cover in the habitat), and life history (body mass,time to sexual maturity) variables, along with phylogeneticrelationships of these rodents. We analyzed these variablesin the context of three major hypotheses. A first explanationposes that rodents live in groups to reduce the energy neededin the construction of their burrows. A second hypothesis suggeststhat grouped rodents increase their ability to detect and escapefrom predators. A third possibility states that group-livingis adopted by rodents to provide extra parental care to their offspring. Our comparative analysis revealed that across speciesvariation of group size is, to some extent, influenced by bodysize, and by the habit of burrow digging. Thus, large sizedrodent species that actively dig their own burrows form largergroup sizes than small sized species that do not dig burrows.In contrast, across species variation of group size was not influenced by differences in the amount of plant cover in thehabitat (an indirect measure of predatory risk), or by differencesin the time to first reproduction (a measure of parental caregiven). Therefore, group-living among the New World histricognathrodents seems more linked to a strategy aimed to reduce theirburrowing cost than to a strategy aimed to reduce their predatory risk, or to extend their parental investment.  相似文献   

3.
Burrow systems play an important role in the life of rodents in arid environments. The objectives of this study were to examine the hypothesis that group living is beneficial to the semifossorial rodent, and determine whether Microcavia australis (Geoffroy and d’Orbigny, 1833) burrows communally and/or shares burrow systems. I related the structure of burrow systems to the number of cavies inhabiting them, in two habitats with different soil hardness and different plant cover (El Leoncito and Ñacuñán). El Leoncito has a harsh climate, with lower plant density and softer soil than Ñacñuán. A total of 18 burrow systems were characterized at Ñacuñán, and 12 at El Leoncito. Social groups at El Leoncito have a higher number of individuals than at Ñacuñán, but the structure of burrow systems in softer soil is narrower (small area size), with fewer holes, less slope and depth of galleries, and with no relationship between the number of holes and burrow area. Therefore, considering the development of the burrow system as an indicator of the cost of burrowing, I conclude that communal burrowing to reduce the energetic cost of burrowing per capita is not the primary cause of cavy sociality. M. australis were not active diggers, because digging behaviour was rarely recorded at either site. Burrow systems of cavies persisted over the years of study, occupied by the same cavies and new offspring, and digging new burrow systems and tunnels was a relatively rare event at both sites. Under the burrow-sharing hypothesis, sociality could prevail in M. australis that regularly dig to build and maintain a burrow system which they use for a long time.  相似文献   

4.
The evolution of vocal alarm communication in rodents   总被引:2,自引:2,他引:0  
On encountering a predator, many species emit potentially riskyvocalizations known as alarm calls. We evaluated the relativeimportance of two adaptive hypotheses on the evolution of calling:(1) communicating to predators, which may function by deterringpursuit and hence increasing individual survival, and (2) analternative nepotistic hypothesis for alarm calling wherebycallers obtain direct and indirect fitness by warning relatives.Focusing on 209 species of rodents, we found significant associationsbetween diurnality and alarm calling, living socially and alarmcalling, and diurnality and sociality. Diurnality, however,accounted for nearly three times as much variation in whetheror not a species alarm called than did sociality. Phylogenetictests revealed that the evolution of diurnality preceded theevolution of alarm calling, and that the evolutions of diurnalityand sociality were unrelated. Our results are consistent withthe hypothesis that alarm communication evolved to communicateto predators. If so, then nepotistic benefits, although importantfor the maintenance of alarm calling in some rodents, may berelatively less important in its evolution.  相似文献   

5.
Burrowing is a widespread nesting behaviour, found in vertebrates and invertebrates. It is particularly common in small procellariiform seabirds such as blue petrels (Halobaena caerulea) and Antarctic prions (Pachyptila desolata), two closely related petrel species. However, digging a burrow is costly and alternative strategies may evolve. Accordingly, blue petrel males can adopt two alternative nesting strategies: digging a new burrow or squatting in an empty one. Importantly, a blue petrel squatter arriving at the colony to breed is more likely to find empty Antarctic prion burrows than empty blue petrel burrows, since the former species only start breeding a month later. However, squatting in a prion’s burrow is risky for blue petrels as the legitimate owner very often returns and claims the burrow back, thus ruining the squatter’s breeding attempt. We present here results of a survey of two sympatric colonies of blue petrels and Antarctic prions on Kerguelen Island. Our data show that blue petrel squatters preferentially occupy blue petrel empty burrows. To investigate potential underlying mechanisms behind this preference, we used a simple Y‐maze design to show that blue petrels can discriminate and prefer their specific odour over the prion odour. Our results confirm the existence of alternative burrowing strategies in blue petrels and suggest that squatters could use olfaction to avoid the less suitable Antarctic prion burrows.  相似文献   

6.
Mammals have evolved several morphological and behavioral adaptations to reduce the risk of predation, but we know little about the ecological factors that favor their evolution. For example, some mammalian carnivores have the ability to spray noxious anal secretions in defense, whereas other species lack such weaponry but may instead rely on collective vigilance characteristic of cohesive social groups. Using extensive natural history data on 181 species in the order Carnivora, we created a new estimate of potential predation risk from mammals and birds of prey and used comparative phylogenetic methods to assess how different sources of predation risk and other ecological variables influence the evolution of either noxious weaponry or sociality in this taxon. We demonstrate that the evolution of enhanced spraying ability is favored by increased predation risk from other mammals and by nocturnality, but the evolution of sociality is favored by increased predation risk from birds of prey and by diurnality, which may allow for enhanced early visual detection. These results suggest that noxious defenses and sociality are alternative antipredator strategies targeting different predator guilds under different lighting conditions.  相似文献   

7.
Some fish species living in mudflats construct burrows for dwelling and hiding. The goby Parapocryptes serperaster is a burrowing fish in mudflats of many estuaries in South East Asia. This study was carried out in the Mekong Delta, Vietnam, to examine burrow morphology and usage by this species. Morphology of the burrows constructed by P. serperaster was investigated by resin castings in situ to obtain the physical structure and configuration of each burrow. Fish from the burrows were caught and measured before burrow casts were made. Fish burrows comprised several openings, a few branching tunnels and multi-bulbous chambers. The surface openings were circular, and the shapes of branching tunnels were nearly round. The burrows had interconnected tunnels and various short cul-de-sac side branches. The burrow structure differed between fish sizes, but burrow dimensions were positively correlated with fish size, indicating that larger fish can make larger and more sophisticated burrow. The burrow structure and dimensions were not different between the dry and wet seasons. Laboratory observations showed that P. serperaster used body movements to dig burrows in the sediment. Burrows could provide a low-tide retreat and protection from predators, but were not used for spawning and feeding for this goby species. This study indicates that the burrowing activity of gobies is an important adaptation for living in shallow and muddy habitats.  相似文献   

8.
Y Qi  DW Noble  J Fu  MJ Whiting 《PloS one》2012,7(7):e41130
Shared ecological resources such as burrow complexes can set the stage for social groupings and the evolution of more complex social behavior such as parental care. Paternity testing is increasingly revealing cases of kin-based groupings, and lizards may be a good system to inform on the early evolution of sociality. We examined spatial and social organization in the lizard Phrynocephalus vlangalii from China and tested genetic relatedness (based on eight microsatellite DNA loci) between offspring and parents that shared burrow complexes. Adult males and females had similar spatial patterns: they overlapped most with members of the opposite sex and least with their own sex. Males in better body condition overlapped with more females, and both sexes showed high site fidelity. Most lizards used a single burrow, but some individuals used two or three burrows. While high site fidelity is consistent with sociality in lizards, juveniles did not preferentially share burrows with parents, and we documented only a few cases of parent-offspring associations through burrow sharing. We suggest that P. vlangalii conforms to a classical polygynous mating system in which the burrow forms the core of the male's territory and may be offered as an important resource for females, but this remains to be determined.  相似文献   

9.
Despite an important role of subterranean rodents as ecosystem engineers, their belowground mobility is poorly documented. It is supposed that their underground burrow systems, once established, are relatively stable because of high-energy costs of digging. We chose the silvery mole-rat, Heliophobius argenteocinereus (Bathyergidae, Rodentia) from mesic Afrotropics as a representative of solitary subterranean rodents to investigate how, and how fast these rodents process their established burrow systems. We combined radio-tracking of individual animals with subsequent mapping of their burrow systems, and we developed a new method for assessing the rate of burrowing. Mole-rats continuously rebuilt their burrow systems; they excavated approx. 0.7 m of new tunnels per day and backfilled on average 64% of all tunnels. On average, every 32 d they established a new nest. They often completely backfilled newly excavated peripheral burrows, while other parts of their burrow systems were more permanent. Their home-ranges were dynamic and continuously shifted in space. Burrow system processing continued even in the advanced dry season, when soil is difficult to work.  相似文献   

10.
The necessity for parental care is a driving force for determining mating systems and social organization. The European ground squirrel, Spermophilus citellus, is a polygynous, gregarious species in which male parental behaviour would not be expected. We had observed males digging in litter burrows that were later occupied by females and their offspring. Males never stayed overnight within these burrows. To determine whether this was some kind of paternal effort we tested the following hypotheses: (1) that male burrowing behaviour was directed towards the male's own offspring or towards the pregnant or lactating mother of the male's offspring; (2) that this behaviour had costs in terms of condition, decreased survival or fecundity; and (3) that it benefited offspring condition or survival. All three assumptions were met. Males worked on the litter burrow of their copulatory partners. Thus, this behaviour was directed towards the male's potential offspring. Male burrowing costs were seen in decreased foraging time and increased body mass loss. Offspring benefits were evident in increased mass at natal emergence. We conclude that male digging at litter burrows can be considered as paternal effort. Lastly, we considered the effects of polygyny on this male parental effort by comparing mating effort, mating success and paternal effort. High mating success was associated with high mating effort and low paternal effort. Moderate to low mating success was associated with lower mating effort and higher paternal effort, indicating a trade-off between the two.  相似文献   

11.
Group living is thought to evolve whenever individuals attain a net fitness advantage due to reduced predation risk or enhanced foraging efficiency, but also when individuals are forced to remain in groups, which often occurs during high-density conditions due to limitations of critical resources for independent breeding. The influence of ecological limitations on sociality has been studied little in species in which reproduction is more evenly shared among group members. Previous studies in the caviomorph rodent Octodon degus (a New World hystricognath) revealed no evidence that group living confers an advantage and suggest that burrow limitations influence formation of social groups. Our objective was to examine the relevance of ecological limitations on sociality in these rodents. Our 4-year study revealed no association between degu density and use of burrow systems. The frequency with which burrow systems were used by degus was not related to the quality of these structures; only in 1 of the 4 years did the frequency of burrow use decrease with decreasing abundance of food. Neither the number of females per group nor total group size (related measures of degu sociality) changed with yearly density of degus. Although the number of males within social groups was lower in 2008, this variation was not related clearly to varying density. The percentage of females in social groups that bred was close to 99% and did not change across years of varying density. Our results suggest that sociality in degus is not the consequence of burrow limitations during breeding. Whether habitat limitations contribute to variation in vertebrate social systems is discussed.  相似文献   

12.
Burrow structure and foraging costs in the fossorial rodent,Thomomys bottae   总被引:2,自引:0,他引:2  
D. Vleck 《Oecologia》1981,49(3):391-396
Summary A model for calculating the energy cost of burrowing by fossorial rodents is presented and used to examine the energetics of foraging by burrowing. The pocket gopher Thomomys bottae (Rodentia: Geomyidae) digs burrows for access to food. Feeding tunnels of Thomomys are broken into segments by laterals to the surface that are used to dispose of excavated soil. Energy cost of burrowing depends on both soil type and on burrow structure, defined by the length of burrow segments, angle of ascent of laterals, depth of feeding tunnels, and burrow diameter. In a desert scrub habitat, Thomomys adjust burrow segment length to minimize cost of burrowing. Observed segment lengths (mean=1.33 m) closely approximate the minimum-cost segment length of 1.22 m. Minimizing energy expended per meter of tunnel constructed maximizes efficiency of foraging by burrowing in the desert scrub. Burrow diameter and cost of burrowing increase with body size, while benefits do not, so foraging by burrowing becomes less enconomical as body size increases. Maximum possible body size of fossorial mammals depends on habitat productivity and energy cost of burrowing in local soils.  相似文献   

13.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

14.
We studied the architecture of the burrow system of the African ice rat Otomys sloggetti robertsi, a non–hibernating, diurnal murid rodent endemic to the sub–alpine and alpine regions of the southern African Drakensberg and Maluti mountains. In our study site we found ice rat burrows in two substrates (organic and mineral soils). The structure of the burrow system was similar in both soil types, comprising several interlinking tunnels, numerous burrow entrances and 1–2 nest chambers. However, the surface area of the burrow systems in organic soils was larger, the tunnels were deeper, and some of the systems contained two levels, all of which was contrary to our assumption that digging would be more difficult in the compact organic soils. Ice rats occur in colonies of up to 17 individuals, and the collected efforts of several individuals are required for constructing complex burrow systems. The burrow structure is similar to those of two arid–adapted relatives, Parotomys brantsii and Parotomys littledalei, suggesting that the burrow architecture among these three taxa may reflect the similar functions of burrows in extreme environments. For ice rats, burrows could provide a suitable microhabitat in which to escape adverse environmental conditions, particularly during winter. Moreover, ice rat burrows contained far fewer nest chambers than those of both Parotomys species, indicating that members in a colony share nest chambers, thereby facilitating huddling. Finally, the extensive interlinking tunnels may provide underground routes to aboveground feeding sites, thereby reducing exposure to adverse conditions.  相似文献   

15.
Parasites with indirect life cycles require trophic transmission from intermediate hosts to definitive (vertebrate) hosts. Transmission may be facilitated if parasite infection alters the behavior of intermediate hosts such that they are more vulnerable to predation. Vulnerability to predation may also be influenced by abiotic factors; however, rarely are the effects of parasites and abiotic factors examined simultaneously. The swash zone of sandy beaches is a particularly harsh environment. Sand crabs (Emerita analoga) burrow rapidly in the swash zone to avoid predators and dislodgment. We examined prevalence and abundance of the acanthocephalan parasite Profilicollis altmani in sand crabs, and investigated the synergistic effects of sand grain size (an important abiotic factor), parasite infection, body size and reproductive condition on burrowing speed in females, from three California sites. More heavily parasitized crabs burrowed more slowly, making them potentially more vulnerable to predation by marine bird definitive hosts. Ovigerous females harbored more parasites than non-ovigerous females, but burrowed more quickly. All crabs burrowed slowest in the coarsest sand, and burrowing times increased with repeated testing, suggesting that it is energetically costly. Abiotic and biotic factors influence burrowing, and behavioral variation across sites may reflect the response to natural variation in these factors.  相似文献   

16.
A methodology for trace fossil identification using burrowing signatures is tested by evaluating ancient and modern lungfish and crayfish burrows and comparing them to previously undescribed burrows in a stratigraphic interval thought to contain both lungfish and crayfish burrows. Permian burrows that bear skeletal remains of the lungfish Gnathorhiza, from museum collections, were evaluated to identify unique burrow morphologies that could be used to distinguish lungfish from crayfish burrows when fossil remains are absent. The lungfish burrows were evaluated for details of the burrowing mechanism preserved in the burrow morphologies together forming burrowing signatures and were compared to new burrows in the Chinle Formation of western Colorado to test the methodology of using burrow signatures to identify unknown burrows.

Permian lungfish aestivation burrows show simple, nearly vertical, unbranched architectures and relatively smooth surficial morphologies with characteristic quasi‐horizontal striae on the burrow walls and vertical striae on the bulbous terminus. Burrow lengths do not exceed 0.5 m. In contrast, modern and ancient crayfish burrows exhibit simple to highly complex architectures with highly textured surficial morphologies. Burrow lengths may reach 4 to 5 m.

Burrow morphologies unlike those identified in Gnathorhiza aestivation burrows were found in four burrow groups from museum collections. Two of these groups exhibit simple architectures and horizontal striae that were greater in sinuosity and magnitude, respectively. One of these burrows contains the remains of Lysoro‐phus, but the burrow surface reveals no reliable surficial characteristics. It is not clear whether Lysorophus truly burrowed or merely occupied a pre‐existing structure. The other two groups exhibit surficial morphologies similar to those found on modern and ancient crayfish burrows and may provide evidence of freshwater crayfish in the Permian.

Burrows from the Upper Triassic Chinle Formation in western Colorado exhibit simple to moderately complex architectural morphologies, ranging from predominantly vertical, unbranched, with little or no chamber development to predominantly vertical, few branches, and with minor chamber development. Surficial burrow morphologies are moderate to highly textured. The burrows have scrape marks, scratch marks, mud and lag‐liners, knobby surfaces, pleopod striae, and body impressions.

Although no fossil remains of the burrowing organism were found within or associated with the Chinle burrows from western Colorado, the similarity of architectural and surficial burrow morphologies to those in the Chinle of Canyonlands, Utah and to modern crayfish burrows, clearly indicates that the Colorado burrows are the product of burrowing crayfish rather than lungfish. Evaluation of burrowing signatures preserved in the architectural and surficial burrow morphologies is a very useful tool to compare and contrast Chinle burrows from different regions on the Colorado Plateau. Documentation of crayfish burrows in the Chinle of Utah and Colorado strongly suggests that other large‐diameter Chinle burrows elsewhere on the Colorado Plateau and in stratigraphically equivalent units may also be the product of crayfish activity.  相似文献   

17.
Muddy sediments are elastic solids through which morphologically diverse animals extend burrows by fracture. Muddy sediments inhabited by burrowing infauna vary considerably in mechanical properties, however, and at high enough porosities, muds can be fluidized. In this study, we examined burrowing behaviors and mechanisms of burrow extension for three morphologically diverse polychaete species inhabiting soft muddy sediments. Worms burrowed in gelatin, a transparent analog for muddy sediments, and in natural sediments in a novel viewing box enabling visualization of behaviors and sediment responses. Individuals of Scalibregma inflatum and Sternaspis scutata can extend burrows by fracture, but both also extended burrows by plastic deformation and by combinations of fracture and plastic deformation. Mechanical responses of sediments corresponded to different burrowing behaviors in Scalibregma; direct peristalsis was used to extend burrows by fracture or a combination of plastic deformation and fracture, whereas a retrograde expansive peristaltic wave extended burrows by plastic deformation. Burrowing speeds differed between behaviors and sediment mechanical responses, with slower burrowing associated with plastic deformation. Sternaspis exhibited less variability in behavior and burrowing speed but did extend burrows by different mechanisms consistent with observations of Scalibregma. Individuals of Ophelina acuminata did not extend burrows by fracture; rather individuals plastically deformed sediments similarly to individuals of the related Armandia brevis. Our results extend the range of natural sediments in which burrowing by fracture has been observed, but the dependence of burrow extension mechanism on species, burrowing behavior, and burrowing speed highlights the need for better understanding of mechanical responses of sediments to burrowers.  相似文献   

18.
We investigated whether the deep-sea isopod Bathynomus doederleini has the capacity to change burrow length in response to changes in environmental conditions. We observed burrowing behavior in individuals that were placed on substrates with either simple (ST) or complex (CT) surface topographies. Individuals in the ST group (N = 10) constructed seven burrows. The mean ratio of the burrow length to body length was 1.8. The individuals in the CT group (N = 10) constructed eight burrows with a mean ratio of burrow length to body length of 2.5. Thus the burrows were significantly longer in the CT group. In addition, the isopods in the CT group often incorporated a chamber in the mid-section of the burrow. Our results may be used to infer the determinants of burrow morphology and speculate about the lifestyle of this species in the deep sea.  相似文献   

19.
Burrowing and foraging of semi‐fossorial rodents can affect species distribution and composition. Ground squirrels dig large burrow systems for refuge from predators and temperature extremes. Burrowing and foraging around burrows by squirrels may affect habitat and resource distributions for other organisms. We examined the impact of Cape ground squirrels (Xerus inauris) on vegetation, small mammals and beetles during winter and summer in grasslands on the edge of the Namib Desert. At each burrow system and paired control site without burrows, we estimated plant cover and height using quadrats (N = 8 paired sites), small mammal abundance and species richness using mark‐recapture techniques (N = 8 paired sites) and beetle abundance and species richness using pitfall traps (N = 6 paired sites, winter only). Squirrel burrowing and foraging activities resulted in lower plant cover and height, higher small mammal abundance and lower beetle abundance and species richness. Squirrels also reduced more plant cover in winter compared to summer, but had no effect on small mammal species richness. Furthermore, plant cover and height were higher in summer, whereas small mammal abundance and species richness were higher in winter. Our results suggest that Cape ground squirrels are important ecosystem engineers that influence plant and animal communities in the Namib Desert grasslands.  相似文献   

20.
The great desert skink (Liopholis kintorei) of the Egerniinae subfamily (Reptilia: Scincidae) is a communal burrowing lizard that inhabits arid spinifex grasslands in central Australia. Great desert skink activity is centred in and around the burrows which are inhabited for many years. However, it is not known whether skinks select burrow sites with specific attributes or how continuing occupancy of burrows is influenced by the surrounding habitat; especially post‐fire, when plant cover is reduced. Here, we test whether great desert skink burrows in areas burnt 2 years previously and in longer unburnt areas are associated with particular habitat attributes, and whether there are differences between occupied and recently abandoned burrow sites. Vegetation composition, cover and soil surface characteristics at 56 established great desert skink burrows, including occupied and recently unoccupied burrows, were compared with 56 random nearby non‐burrow control sites. Burrow sites had higher plant cover compared with the surrounding landscape in both recently burnt and longer unburnt areas and were more likely to be associated with the presence of shrubs. Soil stability and infiltration were also higher at burrow sites. However, we found no evidence that burrows with lower cover were more likely to be abandoned. Our results suggest that great desert skinks may actively select high cover areas for burrow construction, although differences between burrow and control sites may also partly reflect local changes to plant cover and composition and soil properties resulting from burrow construction and long‐term habitation of a site. Further research should determine if burrows with shrubs or higher plant cover provide greater protection from predators, more structural stability for burrow construction, increased prey abundance or other benefits. We recommend that maintenance of areas with relatively higher plant cover be prioritized when managing great desert skink habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号