首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To determine which of the major isoenzymes of pyruvate kinase pancreatic islet pyruvate kinase most resembled, it was compared to pyruvate kinase from other tissues in kinetic and immunologic studies. The pattern of activation by fructose bisphosphate and the patterns of inhibition by alanine and phenylalanine were most similar to those of the M2 isoenzyme from kidney and were dissimilar to those of the isoenzymes from skeletal muscle (type M1) and liver (type L). The islet pyruvate kinase was inhibited by anti-M1 pyruvate kinase serum (which crossreacts with the M2 isoenzyme), but not by anti-L pyruvate kinase. These results are most consistent with islets possessing predominantly, if not exclusively, the M2 isoenzyme of pyruvate kinase. We previously showed that rat pancreatic islet cytosol contains protein kinases that can catalyze a calcium-activated phosphorylation of an endogenous peptide that has properties, such as subunit molecular weight and isoelectric pH, that are identical to those of the M2 and M, isoenzymes of pyruvate kinase, and that islet cytosol can catalyze phosphorylation of muscle pyruvate kinase. In the present study it was shown that incubating islet cytosol with ATP under conditions known to permit phosphorylation and inhibition of liver pyruvate kinase did not affect the islet pyruvate kinase activity. It is concluded that phosphorylation of the islet pyruvate kinase has no immediate effect on enzyme activity.Abbreviations EGTA ethylene glycos his (-aminoethyl ether)-N,N,NN-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   

2.
H C Palfrey 《FEBS letters》1983,157(1):183-190
Incubation of cytosol fractions from a variety of mammalian tissues (heart, liver, lung, adrenal, spleen and skeletal muscle) with Ca2+ (0.5 mM) in the presence of gamma-[32P]ATP resulted in the phosphorylation of a prominent substrate of Mr approximately 100 000 (100 kDa). One-dimensional peptide maps and two-dimensional tryptic fingerprints of the phosphoprotein from these sources were identical. A single major phosphopeptide was generated by trypsin and was determined to contain exclusively phosphothreonine. The 100 kDa substrate could be distinguished from glycogen phosphorylase (Mr approximately 97 000) by a number of criteria including phosphopeptide mapping and by its failure to bind either to glycogen or to a specific antiphosphorylase antibody. The Ca2+-dependent protein kinase responsible for phosphorylation of the 100 kDa protein appeared to be a calmodulin (CaM)-requiring enzyme in that it could be inhibited in cytosol extracts by trifluoperazine (IC50 6-16 microM) and that exogenous CaM was necessary for 100 kDa phosphorylation in CaM-depleted cytosol. These results suggest that a rise in intracellular Ca2+ resulting in an activation of CaM-dependent protein kinase leads to the phosphorylation of a common 100 kDa substrate in many tissues.  相似文献   

3.
Abstract: Partially purified preparations of GABAa/benzodiazepine receptor from rat brain were found to contain high levels of a protein kinase activity that phosphorylated a small number of proteins in the receptor preparations, including a 50-kilodalton (kD) phosphoprotein that comigrated on two-dimensional electrophoresis with purified, immunolabeled, and photolabeled receptor α subunit. Further evidence that the comigrating 50-kD phosphoprotein was, in fact, the receptor α subunit was obtained by peptide mapping analysis: the 50-kD phosphoprotein yielded one-dimensional peptide maps identical to those obtained from iodinated, purified α subunit. Phosphoamino acid analysis revealed that the receptor α subunit is phosphorylated on serine residues by the protein kinase activity present in receptor preparations. Preliminary characterization of the receptor-associated protein kinase activity suggested that it may be a second messenger-independent protein kinase. Protein kinase activity was unaltered by cyclic AMP, cyclic GMP, calcium plus calmodulin, calcium plus phosphatidylserine, and various inhibitors of these protein kinases. Examination of the substrate specificity of the receptor-associated protein kinase indicated that the enzyme preferred basic proteins as substrates. Endogenous phosphorylation experiments indicated that the receptor α subunit may also be phosphorylated in crude membranes by a protein kinase activity present in those membranes. As with phosphorylation of the receptor in purified preparations, its phosphorylation in crude membranes also appeared to be unaffected by activators and inhibitors of second messenger-dependent protein kinases. These findings raise the possibility that the phosphorylation of the α subunit of the GABAa/ benzodiazepine receptor by a receptor-associated protein kinase plays a role in modulating the physiological activity of the receptor in vivo.  相似文献   

4.
Phosphopeptide substrates of a phosphoprotein phosphatase from rat liver   总被引:1,自引:0,他引:1  
The substrate specificity of a preparation of phosphoprotein phosphatase (Mr = 32 000) from rat liver was investigated. Phosphopeptides based on the structure Leu-Arg-Arg-Ala-Ser(P)-Val-Ala-Glx-Leu and Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-Val-Tyr-Glu-Pro-Leu-Lys were used. These phosphopeptides correspond to the phosphorylation sites of rat liver pyruvate kinase (type L) and the beta subunit of rabbit muscle phosphorylase b kinase, respectively. A decrease in the apparent Km values and a concomitant increase in Vmax values was observed when the number of amino acyl residues after the phosphoseryl residue in the respective phosphopeptides were increased from 2 to 4, 5, or 6. Most of the phosphopeptides investigated generally showed apparent Km values higher than the values obtained with phosphopyruvate kinase. Ala-Ser(P)-Val-Ala and Gly-Ser(P)-Val-Tyr appeared to be the shortest phosphopeptides that could be dephosphorylated rapidly. These findings support the hypothesis that a small part of the phosphoprotein may be sufficient to fulfill the minimal requirements for its dephosphorylation.  相似文献   

5.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min . mg)-1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min . mg)-1. When incubated in the presence of Mg[gamma-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 microM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   

6.
To investigate substrates for cyclic AMP-dependent protein kinase in intact islets of Langerhans, batches of islets were incubated with [32P]Pi for 1 h in the presence of 10 mM-glucose; the adenylate cyclase activator forskolin, which in parallel experiments was shown to increase islet cyclic AMP content and insulin release, was then added. Islets were homogenized and subcellular fractions prepared by differential centrifugation. Phosphopeptides were electrophoresed on sodium dodecyl sulphate/polyacrylamide gels and quantified by autoradiography and densitometry. Within 5 min forskolin caused increased labelling of Mr-25 000 and -30 000 cytosolic and Mr-23 000 and -32 000 particulate peptides; a rapid decrease in phosphorylation of Mr-18 000 and -34 000 cytosolic peptides was also observed. In addition, rather slower phosphorylation occurred of the Mr-15 000 peptide previously identified as histone H3 [Christie & Ashcroft (1984) Biochem. J. 218, 87-99]. When similar subcellular fractions were incubated with [gamma-32P]ATP and purified catalytic subunit of cyclic AMP-dependent protein kinase, peptides phosphorylated included cytosolic species of Mr 25 000 and 30 000 and particulate species of Mr 23 000 and 32 000. The distribution of RNA in the subcellular fractions suggested that the Mr-32 000 species could be a ribosomal protein. The 24 000 g pellet was heterogeneous, as judged by marker assays, and was therefore fractionated further by Percoll-density-gradient centrifugation. The peak containing the Mr-23 000 peptide was resolved from marker enzymes for plasma membranes, mitochondria and endoplasmic reticulum and coincided with a peak for insulin: hence the Mr-23 000 peptide is likely to be a secretory-granule component. The study demonstrates that the potentiation of insulin release that occurs when islet cyclic AMP is increased is accompanied by rapid phosphorylation of specific islet substrates for cyclic AMP-dependent protein kinase. The data are consistent with the hypothesis that protein phosphorylation is involved in the regulation of insulin secretion.  相似文献   

7.
Cytosol prepared from rat preovulatory ovarian follicles contained several specific substrates which were phosphorylated by [gamma 32P] ATP in the presence of 2 microM cyclic AMP (cAMP) or 780 nM of highly purified catalytic subunit. These substrates were identified as RII, the regulatory subunit of type II cAMP-dependent protein kinase, an Mr = 43,000 protein presumed to be actin, and four other proteins with Mr = 36,500-15,000. A marked decrease in phosphorylation of these proteins was observed within 6-48 h of human chorionic gonadotropin (hCG)-induced ovulation and luteinization in hormonally primed immature rats. The phosphorylation of these proteins was also low in cytosol of corpora lutea isolated on Days 2, 4, 9, 13 and 23 of pregnancy. The decrease in phosphorylation of RII was associated primarily with a decrease in substrate content as measured by photoaffinity labeling and silver staining techniques, and not to a marked increase in phosphoprotein phosphatase and adenosinetriphosphatase (ATPase) activities. Whereas the decreased phosphorylation of other proteins is also presumed to be related to a decrease in their cytosol content, the data do not exclude the possibility that luteal tissue contains a specific phosphoprotein phosphatase which is not present in granulosa or theca cells of preovulatory follicles. We conclude that luteinizing hormone (LH) or hCG, and thereby cAMP itself, induces the rapid loss of specific phosphoproteins which may be involved in regulating cAMP action in granulosa cells.  相似文献   

8.
The transforming protein of Rous' sarcoma virus (RSV) is a phosphoprotein of Mr 60 000 (pp60src) which displays protein kinase activity specific for tyrosine residues; pp60src is associated with the plasma membrane and is recovered in the detergent-insoluble material which represents the subcellular matrix of the cell. After phosphorylation of this material of RSV-transformed cells with [gamma-32P]ATP, five phosphoproteins have been detected which are not seen in normal cells. These proteins (Mr = 135 000, 125 000, 75 000, 70 000, 60 000) contain phosphotyrosine. Their phosphorylation is strongly inhibited by anti-pp60src antibodies. In cells transformed by a temperature-sensitive mutant of RSV, these phosphoproteins, present at the permissive temperature, are no longer detected at the non-permissive temperature. It is concluded that these phosphorylations are mediated by pp60src protein kinase activity. This supports a possible role of the phosphorylation of cytoskeletal proteins in the transformation process.  相似文献   

9.
Homogenates, membranes and cytosol of rat and human platelets were found to contain cGMP-dependent protein kinase immunoreactivity. Specific cGMP-dependent protein kinase immunoreactivity was about 1.7 pmol protein kinase/mg protein for homogenates of human platelets and 0.7 pmol/mg for homogenates of rat platelets; the majority appeared to be associated with the membrane fraction. In membranes of platelets low concentrations of cAMP (0.5-2 microM) stimulated the phosphorylation of five major proteins with apparent relative molecular masses, Mr, of 240 000, 130 000, 50 000, 42 000 and 22 000 while low concentrations of cGMP (0.5-2 microM) stimulated the phosphorylation of three major proteins with apparent Mr of 130 000, 50 000 and 46 000. An affinity-purified antibody against the cGMP-dependent protein kinase was prepared which specifically inhibited the activity of cGMP-dependent protein kinase. In membranes of human platelets this affinity-purified antibody inhibited the cGMP-stimulated phosphorylation of the three proteins with Mr of 130 000, 50 000 and 46 000 while it had no effect on the cAMP-dependent and cyclic-nucleotide-independent protein phosphorylation. The results demonstrate that platelets contain a cGMP-dependent protein kinase and at least three specific substrates for this enzyme. Two of these substrates, the proteins with apparent molecular Mr of 130 000 and 50 000, are substrates for both cAMP- and cGMP-dependent protein kinase. The protein with apparent Mr of 130 000 appears to be closely related to an intrinsic plasma membrane protein of vascular smooth muscle cells which is a substrate for a membrane-associated cGMP-dependent protein kinase. Therefore, cGMP-dependent protein kinase and cGMP-regulated phosphoproteins may mediate in platelets the intracellular effects of those hormones, vasodilators and drugs which elevate the level of cGMP and inhibit platelet aggregation.  相似文献   

10.
Addition of [gamma -32P]ATP to a 2% Brij-78 40,000g supernatant of sea urchin sperm results in the cAMP-dependent phosphorylation of eight to ten proteins. One phosphoprotein of Mr 190 kD is sperm adenylate cyclase (AC). An antiserum to the AC immunoprecipitates the Mr 190 kD protein. Peptide maps of immunoprecipitates show that the AC is the only phosphoprotein present in the Mr 200 kD range. With respect to the in vitro phosphorylation of AC, the endogenous kinase has a Km for ATP of 5.2 microM and is maximally stimulated by 4-8 microM cAMP. The protein kinase inhibitors H8 (9 microM) and PKI (30 U/ml) inhibit the phosphorylation of the AC. The catalytic subunit of bovine cAMP-dependent protein kinase phosphorylates the AC on the same peptides as the endogenous protein kinase. Cyanogen bromide generated peptide maps of the phosphorylated AC show a minimum of five sites of phosphorylation. No change in the Km or Vmax of the sperm AC resulted from the additional phosphorylation by bovine kinase. Calcium ions at submicromolar concentrations completely block the in vitro phosphorylation of the AC, suggesting the presence in the preparation of a Ca2(+) -activated protein phosphatase. To our knowledge, this is the first report of the phosphorylation of an AC by cAMP-dependent protein kinase.  相似文献   

11.
Angiotensin II, catecholamines, and vasopressin are thought to stimulate hepatic glycogenolysis and gluconeogenesis via a cyclic AMP-independent mechanism that requires calcium ion. The present study explores the possibility that angiotensin II and vasopressin control the activity of regulatory enzymes in carbohydrate metabolism through Ca2+-dependent changes in their state of phosphorylation. Intact hepatocytes labeled with [32P]PO43- were stimulated with angiotensin II, glucagon, or vasopressin and 30 to 33 phosphorylated proteins resolved from the cytoplasmic fraction of the cell by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. Treatment of the cells with angiotensin II or vasopressin increased the phosphorylation of 10 to 12 of these cytosolic proteins without causing measurable changes in cyclic AMP-dependent protein kinase activity. Glucagon stimulated the phosphorylation of the same set of 11 to 12 proteins through a marked increase in cyclic AMP-dependent protein kinase activity. The molecular weights of three of the protein bands whose phosphorylation was increased by these hormones correspond to the subunit molecular weights of phosphorylase (Mr = 93,000), glycogen synthase (Mr = 85,000), and pyruvate kinase (Mr = 61,000). Two of these phosphoprotein bands were positively identified as phosphorylase and pyruvate kinase by affinity chromatography and immunoprecipitation, respectively. Incubation of hepatocytes in a Ca2+-free medium completely abolished the effects of angiotensin II and vasopressin on protein phosphorylation but did not alter those of glucagon. Treatment of hepatocytes with angiotensin II, glucagon, or vasopressin stimulated phosphorylase activity by 250 to 260%, inhibited glycogen synthase activity by 50%, and inhibited pyruvate kinase activity by 30 to 35% (peptides) to 70% (glucagon). The effects of angiotensin II and vasopressin on the activity of all three enzymes were completely abolished if the cells were incubated in a Ca2+-free medium while those of glucagon were not altered. The results imply that angiotensin II, catecholamines, and vasopressin control hepatic carbohydrate metabolism through a Ca2+-requiring, cyclic AMP-independent pathway that leads to the phosphorylation of important regulatory enzymes.  相似文献   

12.
Protein kinase activity in general is stimulated at least 5- to 10-fold in ribosomal salt wash preparations from poliovirus-infected HeLa cells compared with those from mock-infected cells. The stimulation of kinase activity is manifested by increased phosphorylation of ribosome-associated polypeptides having approximate molecular weights of 135,000, 120,000, 85,000, 68,000, 65,000, 40,000, 28,000, 25,000, and 21,000. The Mr 68,000 phosphoprotein is structurally identical to the interferon-induced, double-stranded RNA-activated protein kinase (P1) which phosphorylates the alpha subunit of eucaryotic initiation factor-2 (eIF-2). A similar protein of Mr 68,000 is more phosphorylated in poliovirus-infected cells than in mock-infected cells. Increased phosphorylation of P1 protein in poliovirus-infected cells, however, does not result in an increased phosphorylation of the alpha subunit of endogenous or exogenously added eIF-2, both in vitro and in vivo. These results suggest that a mechanism must exist in poliovirus-infected HeLa cells which prevents further phosphorylation of eIF-2 by the activated kinase.  相似文献   

13.
It has been shown that cAMP-dependent phosphorylation of a soluble sperm protein is important for the initiation of flagellar motion. The suggestion has been made that this motility initiation protein, named axokinin, is the major 56,000-dalton phosphoprotein present in both dog sperm and in other cells containing axokinin-like activity. Since the regulatory subunit of a type II cAMP-dependent protein kinase is a ubiquitous cAMP-dependent phosphoprotein of similar subunit molecular weight as reported for axokinin, we have addressed the question of how many soluble 56,000-dalton cAMP-dependent phosphoproteins are present in mammalian sperm. We report that in bovine sperm cytosol, the ratio of the type I to type II cAMP-dependent protein kinase is approximately 1:1. The type II regulatory subunit is related to the non-neural form of the enzyme and undergoes a phosphorylation-dependent electrophoretic mobility shift. The apparent subunit molecular weights of the phospho and dephospho forms are 56,000 and 54,000 daltons, respectively. When bovine sperm cytosol or detergent extracts are phosphorylated in the presence of catalytic subunits, two major proteins are phosphorylated and have subunit molecular weights of 56,000 and 40,000 daltons. If, however, the type II regulatory subunit (RII) is quantitatively removed from these extracts using either immobilized cAMP or an anti-RII monoclonal affinity column, the ability to phosphorylate the 56,000- but not 40,000-dalton polypeptide is lost. These data suggest that the major 56,000 dalton cAMP-dependent phosphoprotein present in bovine sperm is the regulatory subunit of a type II cAMP-dependent protein kinase and not the motility initiator protein, axokinin.  相似文献   

14.
A phosphorylated regulatory subunit of cyclic AMP-dependent protein kinase (type II) was purified to homogeneity from inorganic [32P]phosphate-injected rats.A new method of measuring the phosphorylation reaction was developed. It was found that this regulatory subunit was phosphorylated in cells and comprised 60, 82 and 55% of the total regulatory subunit in brain, heart and liver cytosol fractions from rats, respectively.Dephosphorylation was stimulated by cyclic nucleotides. The Ka values for cyclic AMP and cyclic IMP were 0.30 and 1.0 μM, respectively. Purified phosphoprotein phosphatase could dephosphorylate the regulatory subunit and this reaction was also stimulated by cyclic nucleotides with similar Ka values. The inhibitors of phosphoprotein phosphatase, NaF and ZnCl2, protected against dephosphorylation unless ADP or cyclic AMP were present.  相似文献   

15.
A rat brain polyribosomal protein with an apparent Mr of 30 000, designated pp30, was further characterized. The protein was identified by its phosphorylation by an endogenous protein kinase sensitive to both corticotropin and spermine. Two-dimensional separation of a polyribosomal fraction was applied, combining non-equilibrium pH-gradient-gel electrophoresis in the first and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in the second dimension. In this system, pp30 was separated into at least five defined phosphoprotein spots. Pulse-labelling with [gamma-32P]ATP followed by a chase for various time periods with excess unlabelled ATP resulted in a shift of the distribution of radioactivity and protein staining along the spots towards the anode. This suggests that the various spots of pp30 may represent multiple phosphorylation states. Limited proteolysis of the five spots with three different proteinases resulted in the same one-dimensional peptide maps with a given proteinase, indicating that all five spots represent different forms of a single phosphoprotein. Inhibition of the overall phosphorylation of pp30 by corticotropin or spermine was accompanied by a shift in the recovery of labelled phosphate towards spots nearer the cathode. Immunoblotting with monoclonal antibodies directed against ribosomal protein S6 stained only one band, a protein that had an apparent Mr of 34 000 and was clearly distinct from pp30.  相似文献   

16.
NA and Ca9-22 cells derived from squamous cell carcinomas of the tongue possess a large number of epidermal growth factor (EGF) receptors (2.0 X 10(6) and 1.3 X 10(6) receptors/cell, respectively). In these cell lines, EGF stimulated receptor autophosphorylation and phosphatidylinositol (PI) turnover. Furthermore, EGF enhanced the phosphorylation of an acidic protein of Mr 80,000. Phosphorylation of this protein was also stimulated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a phorbol ester tumor promoter, and was mainly at serine residues. Phosphopeptide mapping using protease V8 or trypsin indicated that Mr 80,000 proteins isolated from the EGF- and TPA-treated cells were identical. The Mr 80,000 protein was present mainly in the cytosol, but it became closely associated with the membrane as a phosphorylated form upon EGF or TPA stimulation. These results suggest that the EGF-stimulated phosphorylation of the Mr 80,000 acidic phosphoprotein in EGF receptor-hyperproducing tumor cells is mediated through the activation of PI turnover and protein kinase C.  相似文献   

17.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

18.
We have shown by gel filtration on Sepharose 4B at low ionic strength that casein kinases S (type 1), heparin-insensitive, and TS (type 2), heparin-inhibited, of rat liver cytosol participate in two distinct multimolecular systems, Ve/Vo = 1.25 and Ve/Vo = 1.90, respectively, both less retarded than the peak of cAMP-dependent protein kinase activity (Ve/Vo = 2.04). Both casein kinase I and casein kinase II complexes are unstable in 0.5 M NaCl, giving rise by gel filtration under these conditions to the free forms of casein kinase S (Ve/Vo = 2.37, Mr 34 000) and casein kinase TS (Ve/Vo = 2.10, Mr 130 000), respectively. In contrast, the elution volume of cAMP-dependent protein kinase activity is always the same irrespective of the ionic strength of the medium. Casein kinase I, accounting for the whole casein kinase S activity of cytosol, also contains a phosphorylatable 31-kDa protein (p31) which is a substrate of casein kinase S, since its phosphorylation is insensitive to heparin, the heat-stable inhibitor and trifluoperazine, but it is prevented by beryllium. Casein kinase II, on the other hand, apparently results from the association of the whole casein kinase TS (type 2) of rat liver cytosol with a 90-kDa protein substrate (p90) which is distinct from glycogen synthase according to their different peptide mappings. The radiolabelling of p90 is inhibited by heparin, unlabeled GTP and polyglutamates, while it is dramatically and specifically enhanced by polylysine. At least three more protein bands of Mr 58 000, 52 000 and 37 000 are phosphorylated by casein kinase TS in the casein kinase II fraction: their co-elution with casein kinase TS, however, seems to be accidental and their radiolabeling in the presence of polylysine is almost negligible compared to that of p90. It is concluded that p31 and p90 may represent specific targets of casein kinase S and casein kinase TS, respectively, whose intimate association with the enzymes could be functionally significant.  相似文献   

19.
A calmodulin-dependent protein kinase has been purified extensively from a Rous sarcoma virus-transformed rat cell line (RR1022) and from normal rat liver. The calmodulin-dependent protein kinase activity was manifested by in vitro phosphorylation of a single Mr 57 000 endogenous phosphoprotein (pp57) present in both the virally transformed cells and normal rat liver. The calmodulin-dependent protein kinase from transformed cells fractionated with the viral src gene product, pp60v-src, through a 650-fold purification of the oncogene product. However, purification of the calmodulin-dependent protein kinase from normal liver demonstrated that the calmodulin-dependent kinase was distinct from pp60v-src. Phosphorylation of pp57 by the kinase purified from the transformed cell line required Ca2+ and calmodulin, was inhibited by EDTA and was unaffected by cAMP or the heat- and acid-stable protein inhibitor of cAMP-dependent protein kinase. Troponin C did not substitute for calmodulin. A virtually identical calmodulin-dependent protein kinase activity was purified from rat liver by affinity chromatography on calmodulin-Sepharose. Phosphorylation of pp57 by the affinity-purified liver protein kinase was also observed, and required Ca2+ and calmodulin. EGTA and trifluoroperazine inhibited pp57 phosphorylation. The calmodulin-dependent protein kinase reported here did not phosphorylate substrates of known calmodulin-dependent protein kinases in vitro (myosin light chain, phosphorylase b, glycogen synthase, microtubule-associated proteins, tubulin, alpha-casein). Because none of these proteins served as substrates in vitro and pp57 was the only endogenous substrate found, the properties of this enzyme appear to be different from any previously described calmodulin-dependent protein kinase.  相似文献   

20.
Calmodulin-stimulated protein kinase activity from rat pancreas   总被引:8,自引:1,他引:7       下载免费PDF全文
Previous work from our laboratory has demonstrated that neurohumoral stimulation of the exocrine pancreas is associated with the phosphorylation of the Mr 29,000 ribosomal protein S6. In a cell-free system using pancreatic postmicrosomal supernatant as the kinase donor, we found that the following co-factors stimulate the phosphorylation of the Mr 29,000 ribosomal protein: calcium with calmodulin, calcium with phosphatidyl serine, and cAMP. These findings suggest that the pancreas contains a calcium-calmodulin-dependent protein kinase (CaM-PK) that can phosphorylate the Mr 29,000 ribosomal protein. A CaM-PK activity was partially purified sequentially by ion exchange, gel filtration, and calmodulin-affinity chromatography. Phosphorylation of the Mr 29,000 ribosomal protein by the partially purified CaM-PK was dependent on the presence of both calcium and calmodulin and not on the other co- factors. The CaM-PK fraction contained a phosphoprotein of Mr 51,000 whose phosphorylation was also dependent on calcium and calmodulin. When 125I-calmodulin-binding proteins from the CaM-PK fraction were identified using electrophoretic transfers of SDS-polyacrylamide gels, a single Mr 51,000 protein was labeled. The preparation enriched in CaM- PK activity contained an Mr 51,000 protein that underwent phosphorylation in a calcium-calmodulin-dependent manner and an Mr 51,000 calmodulin-binding protein. It is therefore possible that the CaM-PK may comprise a calmodulin-binding phosphoprotein component of Mr 51,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号