首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Congo red binds to the cell wall and inhibits the growth of yeast. In a screening for multicopy suppressor genes of Congo red hypersensitivity of erd1Delta mutant, we found that a previously uncharacterized gene, YBR005w, makes most of the Saccharomyces cerevisiae strains resistant to Congo red. This gene was named RCR1 (resistance to Congo red 1). An rcr1Delta null mutant showed an increased sensitivity to Congo red. RCR1 encodes a novel ER membrane protein with a single transmembrane domain. Molecular dissection suggested that the transmembrane domain and a part of the C-terminal polypeptide are sufficient for the activity. We examined the effect of RCR1 in various null mutants of genes related to the cell wall. The resistance of mutants to Congo red correlates with a reduction of chitin content. Multicopy RCR1 caused a significant decrease in the chitin content while the amount of alkali-soluble glucan did not change. The binding of Calcofluor white to the cell wall significantly decreased in these cells. Our results show that RCR1 regulates the chitin deposition and add firm genetic and biochemical evidences that the primary target of Congo red is chitin in S. cerevisiae.  相似文献   

2.
The CHS5 locus of Saccharomyces cerevisiae is important for wild-type levels of chitin synthase III activity. chs5 cells have reduced levels of this activity. To further understand the role of CHS5 in yeast, the CHS5 gene was cloned by complementation of the Calcofluor resistance phenotype of a chs5 mutant. Transformation of the mutant with a plasmid carrying CHS5 restored Calcofluor sensitivity, wild-type cell wall chitin levels, and chitin synthase III activity levels. DNA sequence analysis reveals that CHS5 encodes a unique polypeptide of 671 amino acids with a molecular mass of 73,642 Da. The predicted sequence shows a heptapeptide repeated 10 times, a carboxy-terminal lysine-rich tail, and some similarity to neurofilament proteins. The effects of deletion of CHS5 indicate that it is not essential for yeast cell growth; however, it is important for mating. Deletion of CHS3, the presumptive structural gene for chitin synthase III activity, results in a modest decrease in mating efficiency, whereas chs5delta cells exhibit a much stronger mating defect. However, chs5 cells produce more chitin than chs3 mutants, indicating that CHS5 plays a role in other processes besides chitin synthesis. Analysis of mating mixtures of chs5 cells reveals that cells agglutinate and make contact but fail to undergo cell fusion. The chs5 mating defect can be partially rescued by FUS1 and/or FUS2, two genes which have been implicated previously in cell fusion, but not by FUS3. In addition, mating efficiency is much lower in fus1 fus2 x chs5 than in fus1 fus2 x wild type crosses. Our results indicate that Chs5p plays an important role in the cell fusion step of mating.  相似文献   

3.
As a first step toward identifying novel genes of wall metabolism in filamentous fungi, we have screened a collection of Aspergillus nidulans mutants for strains exhibiting hypersensitivity toward the chitin binding agent Calcofluor White (CFW). This strategy has been used previously to identify cell wall mutants in Saccharomyces cerevisiae. We have identified 10 mutants representing eight loci, designated calA through calH, for Calcofluor hypersensitivity. All cal mutants are impaired for sporulation at 30 C or 42 C or both, and in eight of the 10 mutations this sporulation defect shows at least partial osmotic remediability. All cal mutants show elevated sensitivity to one or more of the following agents: Caspofungin, Nikkomycin, Tunicamycin, Congo red and SDS, which are recognized wall-compromising agents or have been shown to be inhibitory to wall integrity mutants in yeast. Seven of the 10 cal mutants show swelling at elevated temperature, which in most cases is osmotically remediable. Spore swelling also can be induced at 30 C in all but one of the cal mutants by germination in the presence of one or more of the following: Caspofungin, Nikkomycin or Tunicamycin. Analysis of wall sugars showed no major changes in mutant strains. We also report that the chitin synthase inhibitor Nikkomycin induces excessive spore swelling during germination in all tested strains that have wild type cell wall metabolism (GR5, A4, A28 and AH12) at 42 C but not at 30 C. This effect mimics that of certain temperature-sensitive swollen cell (swo) mutations.  相似文献   

4.
The UDP-glucose:glycoprotein glucosyltransferase (UGGT) is an endoplasmic reticulum sensor for quality control of glycoprotein folding. Saccharomyces cerevisiae is the only eukaryotic organism so far described lacking UGGT-mediated transient reglucosylation of N-linked oligosaccharides. The only gene in S. cerevisiae with similarity to those encoding UGGTs is KRE5. S. cerevisiae KRE5 deletion strains show severely reduced levels of cell wall beta-1,6-glucan polymer, aberrant morphology, and extremely compromised growth or lethality, depending on the strain background. Deletion of both alleles of the Candida albicans KRE5 gene gives rise to viable cells that are larger than those of the wild type (WT), tend to aggregate, have enlarged vacuoles, and show major cell wall defects. C. albicans kre5/kre5 mutants have significantly reduced levels of beta-1,6-glucan and more chitin and beta-1,3-glucan and less mannoprotein than the WT. The remaining beta-1,6-glucan, about 20% of WT levels, exhibits a beta-1,6-endoglucanase digestion pattern, including a branch point-to-linear stretch ratio identical to that of WT strains, suggesting that Kre5p is not a beta-1,6-glucan synthase. C. albicans KRE5 is a functional homologue of S. cerevisiae KRE5; it partially complements both the growth defect and reduced cell wall beta-1,6-glucan content of S. cerevisiae kre5 viable mutants. C. albicans kre5/kre5 homozygous mutant strains are unable to form hyphae in several solid and liquid media, even in the presence of serum, a potent inducer of the dimorphic transition. Surprisingly the mutants do form hyphae in the presence of N-acetylglucosamine. Finally, C. albicans KRE5 homozygous mutant strains exhibit a 50% reduction in adhesion to human epithelial cells and are completely avirulent in a mouse model of systemic infection.  相似文献   

5.
In silico analysis of the genome sequence of the human pathogenic fungus Candida albicans identified an open reading frame encoding a putative fourth member of the chitin synthase gene family. This gene, named CaCHS8, encodes an 1105 amino acid open reading frame with the conserved motifs characteristic of class I zymogenic chitin synthases with closest sequence similarity to the non-essential C. albicans class I CHS2 gene. Although the CaCHS8 gene was expressed in both yeast and hyphal cells, homozygous chs8 Delta null mutants had normal growth rates, cellular morphologies and chitin contents. The null mutant strains had a 25% reduction in chitin synthase activity and were hypersensitive to Calcofluor White. A chs2 Delta chs8 Delta double mutant had less than 3% of normal chitin synthase activity and had increased wall glucan and decreased mannan but was unaffected in growth or cell morphology. The C. albicans class I double mutant did not exhibit a bud-lysis phenotype as found in the class I chs1 Delta mutant of Saccharomyces cerevisiae. Therefore, C. albicans has four chitin synthases with two non-essential class I Chs isoenzymes that contribute collectively to more than 97% of the in vitro chitin synthase activity.  相似文献   

6.
To study the organization and biosynthesis of the yeast cell wall, hypo-osmolarity-sensitive mutants of Saccharomyces cerevisiae were analyzed. Cells of JS4 were irregular in shape and fragile. Calcofluor staining and quantitative analysis indicated that the chitin content was reduced. By DNA cloning and genetic analysis, the mutation hpo1-1 was found to be allelic to GLN1 which encodes glutamine synthetase. The glutamine content was significantly low in JS4, and the mutant was recovered from the cell wall defect by supplying glutamine in the medium. Partial inhibition of glutamine synthetase by phosphinothricin also induced defects in the cell wall. These results indicate that the shortage of glutamine affects cell wall integrity prior to other cellular functions.  相似文献   

7.
Glycosylphosphatidylinositol (GPI)-anchored proteins are involved in cell wall integrity and cell-cell interactions. We disrupted the Candida albicans homologue of the Saccharomyces cerevisiae GPI7/LAS21 gene, which encodes a GPI anchor-modifying activity. In the mutant and on solid media, the yeast-to-hyphae transition was blocked, whereas chlamydospore formation was enhanced. However, the morphogenetic switch was normal in liquid medium. Abnormal budding patterns, cytokinesis and cell shape were observed in both liquid and solid media. The cell wall structure was also modified in the mutants, as shown by hypersensitivity to Calcofluor white. In vitro and in vivo assays revealed that the mutant interacted with its host in a modified way, resulting in reduced virulence in mice and reduced survival in the gastrointestinal environment of mice. The mitogen-activated protein (MAP) kinase pathway of macrophages was downregulated by the wild-type cells but not by the DeltaCagpi7 null strains. In agreement with this abnormal behaviour, mutant cells were more sensitive to the lytic action of macrophages. Our results indicate that a functional GPI anchor is required for full hyphal formation in C. albicans, and that perturbation of the GPI biosynthesis results in hypersensitivity to host defences.  相似文献   

8.
In a screen for cell wall defects in Saccharomyces cerevisiae, we isolated a strain carrying a mutation in the Cdc28-activating kinase CAK1. The cak1P212S mutant cells exhibit multiple, elongated and branched buds, beta(1,3)glucan-poor regions of the cell periphery and lysed upon osmotic shock after treatment with the chitin synthase III inhibitor Nikkomycin Z. Ultrastructural examination of cak1P212S mutants revealed a thin, uneven cell wall and marked abnormalities in septum formation. In all of the above aspects, the cak1P212S mutants are similar to previously described cla4 mutants, suggesting that the cell wall defects are common to mutants with hyperpolarized growth. In cak1P212S mutants, chitin accumulates all over the surface of the cells and glucan synthase activity is located preferentially to the tips of elongated buds. We conclude that the cell wall weakness in cak1P212S mutants is caused by hyperpolarized secretion of glucan synthase and lack of reinforcement of the lateral cell walls. Showing that the defect depends at least in part on Cdc28, the cak1P212S hyperpolarized growth phenotype can be suppressed by a Cak1-independent Cdc28-allele. The results underline the importance of a minor cell wall component, the chitin of lateral walls, for the integrity of the cell in a stress situation.  相似文献   

9.
The morphology of three Saccharomyces cerevisiae strains, all lacking chitin synthase 1 (Chs1) and two of them deficient in either Chs3 (calR1 mutation) or Chs2 was observed by light and electron microscopy. Cells deficient in Chs2 showed clumpy growth and aberrant shape and size. Their septa were very thick; the primary septum was absent. Staining with WGA-gold complexes revealed a diffuse distribution of chitin in the septum, whereas chitin was normally located at the neck between mother cell and bud and in the wall of mother cells. Strains deficient in Chs3 exhibited minor abnormalities in budding pattern and shape. Their septa were thin and trilaminar. Staining for chitin revealed a thin line of the polysaccharide along the primary septum; no chitin was present elsewhere in the wall. Therefore, Chs2 is specific for primary septum formation, whereas Chs3 is responsible for chitin in the ring at bud emergence and in the cell wall. Chs3 is also required for chitin synthesized in the presence of alpha-pheromone or deposited in the cell wall of cdc mutants at nonpermissive temperature, and for chitosan in spore walls. Genetic evidence indicated that a mutant lacking all three chitin synthases was inviable; this was confirmed by constructing a triple mutant rescued by a plasmid carrying a CHS2 gene under control of a GAL1 promoter. Transfer of the mutant from galactose to glucose resulted in cell division arrest followed by cell death. We conclude that some chitin synthesis is essential for viability of yeast cells.  相似文献   

10.
The CAL1 gene was cloned by complementation of the defect in Calcofluor-resistant calR1 mutants of Saccharomyces cerevisiae. Transformation of the mutants with a plasmid carrying the appropriate insert restored Calcofluor sensitivity, wild-type chitin levels and normal spore maturation. Southern blots using the DNA fragment as a probe showed hybridization to a single locus. Allelic tests indicated that the cloned gene corresponded to the calR1 locus. The DNA insert contains a single open-reading frame encoding a protein of 1,099 amino acids with a molecular mass of 124 kD. The predicted amino acid sequence shows several regions of homology with those of chitin synthases 1 and 2 from S. cerevisiae and chitin synthase 1 from Candida albicans. calR1 mutants have been found to be defective in chitin synthase 3, a trypsin-independent synthase. Transformation of the mutants with a plasmid carrying CAL1 restored chitin synthase 3 activity; however, overexpression of the enzyme was not achieved even with a high copy number plasmid. Since Calcofluor-resistance mutations different from calR1 also result in reduced levels of chitin synthase 3, it is postulated that the products of some of these CAL genes may be limiting for expression of the enzymatic activity. Disruption of the CAL1 gene was not lethal, indicating that chitin synthase 3 is not an essential enzyme for S. cerevisiae.  相似文献   

11.
The Phycomyces developmental mutant S356 elaborates spores which show a much poorer viability and a higher affinity for Calcofluor White than the wild-type spores. Protease-activated extracts of the mutant spores showed higher levels of chitin synthetase activity than the parental strain-derived spores. High levels of enzyme activity in the mutant extracts, but not in the corresponding wild-type extracts, could be detected in the absence of an exogenous protease. The high basal active chitin synthetase is not the result of activation by endogeneous proteases during cell breakage since protease inhibitors did not reduce, but rather increased, the activity levels. The analysis of cell wall composition in the mutant spores revealed significant changes in the proportion of uronic acids and protein but not in chitin. The mutant phenotype is discussed in relation to the developmental stage at which the alterations connected with cell wall metabolism occurred.  相似文献   

12.
Papulacandin B, an antifungal agent that interferes with the synthesis of yeast cell wall (1,3)beta-D-glucan, was used to isolate resistant mutants in Schizosaccharomyces pombe and Saccharomyces cerevisiae. The resistance to papulacandin B always segregated as a recessive character that defines a single complementation group in both yeasts (pbr1+ and PBR1, respectively). Determination of several kinetic parameters of (1,3)beta-D-glucan synthase activity revealed no differences between S. pombe wild-type and pbr1 mutant strains except in the 50% inhibitory concentration for papulacandin B of the synthases (about a 50-fold increase in mutant activity). Inactivation of the synthase activity of both yeasts after in vivo treatment with the antifungal agent showed that mutant synthases were more resistant than the corresponding wild-type ones. Detergent dissociation of the S. pombe synthase into soluble and particulate fractions and subsequent reconstitution indicated that the resistance character of pbr1 mutants resides in the particulate fraction of the enzyme. Cloning and sequencing of PBR1 from S. cerevisiae revealed a gene identical to others recently reported (FKS1, ETG1, CWH53, and CND1). Its disruption leads to reduced levels of both (1,3)beta-D-glucan synthase activity and the alkali-insoluble cell wall fraction. Transformants containing the PBR1 gene reverse the defect in (1,3)beta-D-glucan synthase. It is concluded that Pbr1p is probably part of the (1,3)beta-D-glucan synthase complex.  相似文献   

13.
The shape and integrity of fungal cells is dependent on the skeletal polysaccharides in their cell walls of which beta(1,3)-glucan and chitin are of principle importance. The human pathogenic fungus Candida albicans has four genes, CHS1, CHS2, CHS3 and CHS8, which encode chitin synthase isoenzymes with different biochemical properties and physiological functions. Analysis of the morphology of chitin in cell wall ghosts revealed two distinct forms of chitin microfibrils: short microcrystalline rodlets that comprised the bulk of the cell wall; and a network of longer interlaced microfibrils in the bud scars and primary septa. Analysis of chitin ghosts of chs mutant strains by shadow-cast transmission electron microscopy showed that the long-chitin microfibrils were absent in chs8 mutants and the short-chitin rodlets were absent in chs3 mutants. The inferred site of chitin microfibril synthesis of these Chs enzymes was corroborated by their localization determined in Chsp-YFP-expressing strains. These results suggest that Chs8p synthesizes the long-chitin microfibrils, and Chs3p synthesizes the short-chitin rodlets at the same cellular location. Therefore the architecture of the chitin skeleton of C. albicans is shaped by the action of more than one chitin synthase at the site of cell wall synthesis.  相似文献   

14.
Temperature-sensitive yeast mutants defective in gene CDC24 continued to grow (i.e., increase in cell mass and cell volume) at restrictive temperature (36 degrees C) but were unable to form buds. Staining with the fluorescent dye Calcofluor showed that the mutants were also unable to form normal bud scars (the discrete chitin rings formed in the cell wall at budding sites) at 36 degrees C; instead, large amounts of chitin were deposited randomly over the surfaces of the growing unbudded cells. Labeling of cell-wall mannan with fluorescein isothiocyanate-conjugated concanavalin A suggested that mannan incorporation was also delocalized in mutant cells grown at 36 degrees C. Although the mutants have well-defined execution points just before bud emergence, inactivation of the CDC24 gene product in budded cells led both to selective growth of mother cells rather than of buds and to delocalized chitin deposition, indicating that the CDC24 gene product functions in the normal localization of growth in budded as well as in unbudded cells. Growth of the mutant strains at temperatures less than 36 degrees C revealed allele-specific differences in behavior. Two strains produced buds of abnormal shape during growth at 33 degrees C. Moreover, these same strains displayed abnormal localization of budding sites when growth at 24 degrees C (the normal permissive temperature for the mutants); in each case, the abnormal pattern of budding sites segregated with the temperature sensitivity in crosses. Thus, the CDC24 gene product seems to be involved in selection of the budding site, formation of the chitin ring at that site, the subsequent localization of new cell wall growth to the budding site and the growing bud, and the balance between tip growth and uniform growth of the bud that leads to the normal cell shape.  相似文献   

15.
The growths of Saccharomyces cerevisiae wild-type strain and another strain containing a disrupted structural gene for chitin synthase (chs1::URA3), defective in chitin synthase 1 (Chs1) but showing a new chitin synthase activity (Chs2), were affected by Calcofluor. To be effective, the interaction of Calcofluor with growing cells had to occur at around pH 6. Treatment of growing cells from these strains with the fluorochrome led to an increase in the total levels of Chs1 and Chs2 activities measured on permeabilized cells. During treatment, basal levels (activities expressed in the absence of exogenous proteolytic activation) of Chs1 and Chs2 increased nine- and fourfold, respectively, through a mechanism dependent on protein synthesis, since the effect was abolished by cycloheximide. During alpha-factor treatment, both Chs1 and Chs2 levels increased; however, as opposed to what occurred during the mitotic cell cycle, there was no further increase in Chs1 or Chs2 activities by Calcofluor treatment.  相似文献   

16.
In Candida albicans wild-type cells, the beta1, 6-glucanase-extractable glycosylphosphatidylinositol (GPI)-dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI-CWPs, including Als1p and Als3p, are attached via beta1,6-glucan to beta1,3-glucan. The remaining GPI-CWPs are linked through beta1,6-glucan to chitin. The beta1,6-glucanase-resistant protein fraction is small and consists of Pir-related CWPs, which are attached to beta1,3-glucan through an alkali-labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Delta and pmt1Delta mutant strains, which are defective in N- and O-glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI-CWPs through beta1,6-glucan to chitin. In these cells, the level of Pir-CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a beta1, 6-glucan-deficient hemizygous kre6Delta mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.  相似文献   

17.
We previously isolated the Saccharomyces cerevisiae HKR1 gene that confers on S. cerevisiae cells resistance to HM-1 killer toxin secreted by Hansenula mrakii (S. Kasahara, H. Yamada, T. Mio, Y. Shiratori, C. Miyamoto, T. Yabe, T. Nakajima, E. Ichishima, and Y. Furuichi, J. Bacteriol. 176:1488-1499, 1994). HKR1 encodes a type 1 membrane protein that contains a calcium-binding consensus sequence (EF hand motif) in the cytoplasmic domain. Although the null mutation of HKR1 is lethal, disruption of the 3' part of the coding region, which would result in deletion of the cytoplasmic domain of Hkr1p, did not affect the viability of yeast cells. This partial disruption of HKR1 significantly reduced beta-1,3-glucan synthase activity and the amount of beta-1,3-glucan in the cell wall and altered the axial budding pattern of haploid cells. Neither chitin synthase activity nor chitin content was significantly affected in the cells harboring the partially disrupted HKR1 allele. Immunofluorescence microscopy with an antibody raised against Hkr1p expressed in Escherichia coli revealed that Hkr1p was predominantly localized on the cell surface. The cell surface localization of Hkr1p required the N-terminal signal sequence because the C-terminal half of Hkr1p was detected uniformly in the cells. These results demonstrate that HKR1 encodes a cell surface protein that regulates both cell wall beta-glucan synthesis and budding pattern and suggest that bud site assembly is somehow related to beta-glucan synthesis in S. cerevisiae.  相似文献   

18.
The yeast Saccharomyces cerevisiae exhibits high ethanol tolerance compared with other microorganisms. The mechanism of ethanol tolerance in yeast is thought to be regulated by many genes. To identify some of these genes, we screened for ethanol-sensitive S. cerevisiae strains among a collection of mutants obtained using transposon mutagenesis. Five ethanol-sensitive (ets) mutants were isolated from approximately 7,000 mutants created by transforming yeast cells with a transposon (mTn-lacZ/LEU2)-mutagenized genomic library. Although these mutants grew normally in a rich medium, they could not grow in the same medium containing 6% ethanol. Sequence analysis of the ets mutants revealed that the transposon was inserted in the coding regions of BEM2, PAT1, ROM2, VPS34 and ADA2. We constructed deletion mutants for these genes by a PCR-directed disruption method and confirmed that the disruptants, like the ets mutants, were ethanol sensitive. Thus, these five genes are indeed required for growth under ethanol stress. These mutants were also more sensitive than normal cells to Calcofluor white, a drug that affects cell wall architecture, and Zymolyase, a yeast lytic enzyme containing mainly beta-1,3- glucanase, indicating that the integrity of the cell wall plays an important role in ethanol tolerance in S. cerevisiae.  相似文献   

19.
20.
This paper reports a phenotypic characterization of ggp1 mutants. The cloned GGP1 (GAS1) gene, which encodes a major GPI-anchored glycoprotein (gp115) of Saccharomyces cerevisiae of unknown function, was used to direct the inactivation of the chromosomal gene in haploid and diploid strains by gene replacement. The analysis of the null mutants reveals a reduction in the growth rate of 15 to 40%. Cells are round, with more than one bud, and extensively vacuolized. In the stationary phase, mutant cells are very large, arrest with a high percentage of budded cells (about 54 and 70% for haploid and diploid null mutants, respectively, in comparison with about 10 to 13% for control cells), and have reduced viability. The observed phenotype suggests defects in cell separation. Flow cytometric analysis of DNA reveals an increase in the fraction of cells in the G2+M+G1* compartment during exponential growth. Conjugation and sporulation are not affected. The exocellular location of gp115 led us to examine cell wall properties. Cell wall and septum ultrastructure of abnormally budded cells was analyzed by electron microscopy analysis, and no appreciable differences from wild-type cells were found. Microscopic analysis revealed an increase in chitin content and delocalization. In comparison with control cells, ggp1 null mutants are shown to be resistant to Zymolyase during the exponential growth phase. A fivefold overexpression of gp115 does not bring about any effects on cell growth parameters and cell wall properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号