首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida lipolytica yeast was grown batchwise on two different carbon sources, glucose and n-hexadecane. Free ceramides were quantitatively isolated from sphingolipid fractions of total lipids by a combination of column chromatography and preparative thin-layer chromatography. Their composition, after acid methanolysis, was analysed by gas-liquid chromatography. The ceramide content accounted for 2.6% of the total cell lipids in hexadecane-grown cells, which was 1.5 times higher than in glucose-grown cells. The fatty acid composition of ceramides was characterized by the predominance of fatty acids shorter than 20 carbon atoms and by high concentrations of fatty acids with 16 carbon atoms after growth on both carbon sources. The dominant fatty acid was hydroxylated 16:0 in the glucose-grown cells and 16:0 in the hexadecane-grown cells. The striking finding was the low degree of fatty acid hydroxylation and relatively high proportion of odd-numbered fatty acids in ceramide of the n-hexadecane-grown cells. The ceramides contained an unusual long-chain base composition. In hexadecane-grown cells more than 60% of the long-chain bases were C19 phytosphingosine. In glucose-grown cells more than one-half of the total long-chain bases were tetrahydroxy bases, 4,5-dihydroxysphinganine and 4,5-dihydroxyeicosasphinganine. Received: 20 April 1998 / Received revision: 10 July 1998 / Accepted: 29 July 1998  相似文献   

2.
Candida lipolytica yeast was grown batchwise on glucose medium. Cerebrosides were isolated from the sphingolipid fraction of total lipids using column chromatography and separated into two compounds by high-performance thin-layer chromatography. Glucose was detected as the sole sugar constituent in cerebrosides. The fatty acid composition of cerebrosides was characterised by a predominance of saturated fatty acids and by a high proportion of fatty acids with 16 carbon atoms. The dominant fatty acid was h16:0. The principal long-chain base components of both cerebroside species were trihydroxy bases, 18- and 20-phytosphinosine. The unique characteristic of cerebrosides was the presence of a high proportion of sphingosine (one-fourth of the total long-chain bases), which is a common characteristic of mammalian sphingolipids and rarely occurs in yeast cerebrosides. The ceramide moiety profile of cerebrosides is similar to that of epidermal ceramides, which implies a possibility for their application in care cosmetics.  相似文献   

3.
Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1-14C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines.  相似文献   

4.
The influence on fatty acid composition of growth medium composition and phase of growth during batch culture and of dilution rate and growth temperature during continuous culture was studied in the eicosapentaenoic-acid (20:5 n-3)-producing Vibrio CCUG 35308. In glucose-mineral medium, even-numbered normal fatty acyl residues, primarily 16:0, 16:1, 18:1, and 20:5, strongly dominated (ca. 90%), and the fatty acid profile remained practically unchanged throughout a batch-growth cycle. In nutrient broth, the contribution by “uncommon” fatty acids, mainly i-13:0, 15:0, i-15:0, and 17:1 was generally higher, and increased from 15.4% of total fatty acids in early exponential growth phase to 33.2% in the stationary phase. Reduction of the dilution rate in a chemostat from 0.27 to 0.065 h–1 also led to an almost threefold increase in the proportion of odd-numbered residues at the expense of the even-numbered normal ones. Contrary to this plasticity in the overall fatty acid profile influenced by variations in nutrient composition and availability, the level of eicosapentaenoic acid seemed exclusively dictated by growth temperature. The synthesis of this polyunsaturated fatty acid may be a key regulatory process in maintaining membrane fluidity. Received: 3 November 1995 / Accepted: 25 February 1996  相似文献   

5.
The influence of growth temperature, media composition and cell age on the chemical composition of Bacillus stearothermophilus strain AN 002 has been determined. The total cellular protein decreased and the free amino acid content increased with growth temperature, in both exponential and stationary growth phase. The protein and free amino acid contents of cells were higher in the stationary phase than in the exponential phase, irrespective of growth temperature and media composition. The RNA content was only reduced in cells grown at 55° C. No significant variations were observed in the DNA and carbohydrate contents with respect to growth temperature and cell age. The total lipid and fatty acid compositions on the other hand varied as a function of growth temperature, cell age and media composition. Differences in the relative concentrations of even, odd and branched chain fatty acids were noticed. Novariation was observed in the antiiso and unsaturated fatty acids with respect to growth temperature. The unique variations in the fatty acid composition and total lipids at the growth temperature of 50° C and their variations in the stationary growth phase seem to be characteristic for B. stearothermophilus AN 002.  相似文献   

6.
The effects of changes in the fatty acid composition of Pseudomonas aeruginosa induced by growth conditions on its resistance to two quaternary ammonium compounds (QAC) were investigated. The temperature and growth phase were the most influential parameters affecting the fatty acid composition of this bacterium. Furthermore, the formation of saturated fatty acids and cyclopropane fatty acids was stimulated by increasing the temperature, whereas the proportion of unsaturated fatty acids fell. The degree of saturation and the proportion of cyclopropane fatty acids increased in the course of the exponential and stationary phases. These modifications mostly concerned the inner membrane of the bacterium. Resistance of P. aeruginosa to both QAC tested was not significantly influenced by temperature and growth phase variations. Thus, resistance to the two QAC did not seem to be dependent on modifications of the fatty acid composition of the inner membrane.  相似文献   

7.
The fatty acid and long-chain base composition of five major gangliosides from human stomach and small and large intestine mucosa were analyzed with gas chromatography. All the gangliosides greatly resembled each other in the fatty acid pattern. The main fatty acids were C16:0, C18:0 and C24:0. No hydroxy fatty acids could be detected. In all the gangliosides 4-sphingenine was the predominant long-chain base (70–75%). About 15% of the long-chain bases had 20 carbon atoms in their chain. No trihydroxy long-chain bases could be detected.  相似文献   

8.
Abstract— The fatty acid composition of cerebrosides, sulphatides and ceramides has been determined at 20 days postpartum in the brains of Quaking mutant mice and of littermate controls. There was a significant deficit in the proportion of long-chain fatty acids (C22-C24) affecting both normal and a-hydroxy fatty acids of the cerebrosides. The proportion of normal but not the a-hydroxy long-chain fatty acids of the sulphatides was also decreased. Striking and disproportionate deficits of the C24:1 and C24 h:1 fatty acids of cerebrosides, sulphatides and ceramides characterized the brain of the Quaking mutant, and an increased proportion of C23 h:O fatty acid was found in the cerebrosides and sulphatides of the brain of this mutant. We compared these data with findings on the Jimpy mutant which has been examined by the same techniques. The deficiency of long-chain fatty acids which was found in the cerebrosides and sulphatides of both mutants was less extensive but more selective in the Quaking mutant.  相似文献   

9.
The in vivo effects of sterculic acid methyl ester on triacylglycerol fatty acid composition in the oleaginous, hydrocarbon-degrading bacterium R. opacus strain PD630 was investigated. Sterculic acid, a cyclopropene fatty acid and an inhibitor of the stearoyl-CoA desaturase system, strongly inhibited the synthesis of monoenic fatty acids, of saturated fatty acids with more than 16 carbon atoms and of odd-numbered fatty acids when added to the culture medium. In addition, chemical mutagenesis and the application of the penicillin enrichment technique provided mutants, which were more or less completely impaired in the desaturation of long-chain fatty acids and exhibited in some cases a similar fatty acid composition like the wild-type in the presence of sterculic acid methyl ester. The implications of these findings for fatty acid metabolism in R. opacus strain PD630 are discussed.  相似文献   

10.
The membrane lipid composition of Tetrahymena pyriformis NT-I was observed to change in a manner markedly dependent on the progress of culture age. The pellicular, mitochondrial and microsomal membranes were isolated from cell harvested at various growth phases (I, early exponential; II, mid-exponential; III, late exponential; IV, early stationary; V, late stationary) and their lipid composition was analyzed by thin-layer and gas-liquid chromatography. Although the phospholipid composition varied somewhat among membrane fractions, the most general age-dependent alteration was a considerable decrease in the content of phosphatidylethanolamine accompanied by a small increase in phosphatidylcholine. The 2-aminoethylphosphonolipid, enriched in the surface membrane pellicle, did not undergo a consistent change. As for fatty acid composition the most notable variation occurred in unsaturated fatty acids; a great increase in oleic and linoleic acids and a compensatory decrease in palmitoleic acid. This resulted in an augmented unsaturation of the overall phospholipid fatty acid profile of the aged membranes. The age-associated drastic decline in the palmitoleic acid content in membrane phospholipids could be accounted for by the markedly lowered activity of palmitoyl-CoA desaturase. The microsomes from the early exponential phase cells possess a 4-fold higher activity of the desaturase as compared to that of the late stationary phase microsomes. The decreased desaturase activity associated with the culture age was also reflected in the corresponding decrease in the conversion rate of [14C]palmitate to [14C]palmitoleate in cells labelled in vivo. The ESR spectra of the spin-labeled phospholipids extracted from the pellicular and microsomal membranes have led to the suggestion that these types of membrane would become more fluid with the age of growth.  相似文献   

11.
The lipid and biochemical composition of the haptophyte Isochrysis galbana TK1 was examined. Cultures were grown at 15 °C and 30 °C, and harvested in the exponential and early stationary growth phases. Carbohydrate and protein content varied at the two culture temperatures and growth phases. The highest protein content was found at the exponential growth phase at 15 °C, and the highest carbohydrate content was found at the stationary phase at the same culture temperature. Lipid accumulated in the stationary growth phase and its content was higher at 30 °C than at 15 °C regardless of the growth phase. The neutral lipids were the major class of lipid found in all the cultures. The stationary phase culture had a higher proportion of neutral lipids than the exponential phase culture and the proportion decreased slightly when culture temperature was increased from 15 °C to 30 °C. Phospholipid levels remained constant at the two temperatures, but slightly decreased in the stationary phase. Glycolipids in the exponentially growing cells were higher than those from stationary growth phase and increased with temperature. Polyunsaturated fatty acids (PUFAs) predominated in glycolipids and phospholipids. Cells grown at 15 °C contained higher proportion of 18:3 (n–3) and 22:6 (n–3) with a corresponding decrease in 18:2 (n–6), monounsaturated and saturated fatty acids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Fatty acid synthesis in Escherichia coli   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mmumoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C(17)-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO(4) (2-) or Mg(2+), was growth-limiting there was a small accumulation of C(17)-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH(4) (+) or PO(4) (3-) was growth-limiting and there were adequate supplies of glycerol, Mg(2+) and SO(4) (2-), there was a marked accumulation of C(17)-cyclopropane acid and C(19)-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C(17)-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg(2+) and SO(4) (2-) stimulated cyclopropane acid formation in resting cells.  相似文献   

13.
EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI.   总被引:60,自引:21,他引:39  
Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260-1267. 1962.-Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature.  相似文献   

14.
Endogeneous fatty acid biosynthesis in the two yeast species, Saccharomyces cerevisiae and Candida lipolytica is completely repressed by the addition of long-chain fatty acids to the growth medium. In Candida lipolytica, this repression is accompanied by a corresponding loss of fatty acid synthetase activity in the cell homogenate, when the cells were grown on fatty acids as the sole carbon source. The activity of the Saccharomyces cerevisiae fatty acid synthetase, however, remains unaffected by the addition of fatty acids to a glucose-containing growth medium. From fatty-acid-grown Candida lipolytica cells no fatty acid synthetase complex can be isolated, nor is there any immunologically cross-reacting fatty acid synthetase protein detectable in the crude cell extract. From this it is concluded that Candida lipolytica, but not Saccharomyces cerevisiae, is able to adapt to the growth on fatty acids either by repression of fatty acid synthetase biosynthesis or by a fatty-acid-induced proteolytic degradation of the multienzyme complex. Similarly, the fatty acid synthetase complex disappears rapidly from stationary phase Candida lipolytica cells even after growth in fatty-acid-free medium. Finally, it was found that the fatty acid synthetase complexes from Saccharomyces cerevisiae and Candida lipolytica, though very similar in size and subunit composition, were immunologically different and had no common antigenic determinants.  相似文献   

15.
The content of total cellular lipid of Candida tropicalis grown on a mixture of n-alkanes (C10–C18) was about 20% of the dry cell weight at the exponential growth phase and 14% at the early stationary phase. Phospholipid corresponded to approximately 70 % of the total lipid independent of the growth phases. The composition of cellular lipid classes did not change significantly during the growth. On the other hand, a drastic time-course change in fatty acid composition was observed. The proportion of odd-chain fatty acids, one of the most specific cellular components of the yeast grown on the n-alkane mixture, increased in both phospholipid and triglyceride along with the yeast growth. In the meantime, the proportion of polyunsaturated fatty acids varied markedly during the course of cultivation, showing a peak at the early growth phase. The high content of polyunsaturated fatty acids at the early stages of growth correlated to the contents of these acids in phospholipid rather than in triglyceride.  相似文献   

16.
Summary The yeast Candida maltosa precultivated on liquid n-alkanes utilized different solid n-alkanes (especially C20–C25) in the presence of pristane as an organic phase with rates comparable to, or somewhat larger than, those of liquid n-alkanes. Analysis of cellular fatty acids indicated an assimilation of solid n-alkanes via monoterminal oxidation. The resulting fatty acids with substrate chain length were chain-shortened by C2 units down to an optimal range of chain length from C16 to C18 and incorporated into cellular, lipids directly or after desaturation. The intermediates of chain-shortening with numbers of carbon atoms higher than C18, as well as the unusually long-chain fatty acids of substrate chain length, were detected in trace amounts only. Even-carbon-numbered and odd-numbered fatty acids predominated in experiments with evenchain and odd-chain n-alkanes, respectively. Studies with cerulenin indicated that de novo synthesis of fatty acids was negligible. Oxidation of solid n-alkanes by the yeast C. maltosa yielded fatty acid patterns similar to those of cells grown on liquid n-alkanes.  相似文献   

17.
The influence of the carbon source on cell wall properties was analyzed in an efficient alkane-degrading strain of Rhodococcus erythropolis (strain E1), with particular focus on the mycolic acid content. A clear correlation was observed between the carbon source and the mycolic acid profiles as estimated by high-performance liquid chromatography and mass spectrometry. Two types of mycolic acid patterns were observed after growth either on saturated linear alkanes or on short-chain alkanoates. One type of pattern was characterized by the lack of odd-numbered carbon chains and resulted from growth on linear alkanes with even numbers of carbon atoms. The second type of pattern was characterized by mycolic acids with both even- and odd-numbered carbon chains and resulted from growth on compounds with odd-numbered carbon chains, on branched alkanes, or on mixtures of different compounds. Cellular short-chain fatty acids were twice as abundant during growth on a branched alkane (pristane) as during growth on acetate, while equal amounts of mycolic acids were found under both conditions. More hydrocarbon-like compounds and less polysaccharide were exposed at the cell wall surface during growth on alkanes. Whatever the substrate, the cells had the same affinity for aqueous-nonaqueous solvent interfaces. By contrast, bacteria displayed completely opposite susceptibilities to hydrophilic and hydrophobic antibiotics and were found to be strongly stained by hydrophobic dyes after growth on pristane but not after growth on acetate. Taken together, these data show that the cell wall composition of R. erythropolis E1 is influenced by the nutritional regimen and that the most marked effect is a radical change in cell wall permeability.  相似文献   

18.
Phospholipid Alterations During Growth of Escherichia coli   总被引:25,自引:20,他引:5  
As cultures of Escherichia coli progressed from the exponential growth phase to the stationary growth phase, the phospholipid composition of the cell was altered. Unsaturated fatty acids were converted to cyclopropane fatty acids, and phosphatidyl glycerol appears to have been converted to cardiolipin. With dual isotope label experiments, the kinetics of synthesis of cyclopropane fatty acid for each of the phospholipids was examined in vivo. The amount of cyclopropane fatty acid per phospholipid molecule began to increase in phosphatidyl ethanolamine at a cell density below the density at which this increase was observed in phosphatidyl glycerol or cardiolipin. The rate of this increase in phosphatidyl glycerol or in cardiolipin was faster than the rate of increase in phosphatidyl ethanolamine. After a few hours of stationary-phase growth, all the phospholipids were equally rich in cyclopropane fatty acids. It is suggested that the phospholipid alterations observed are a mechanism to protect against phospholipid degradation during stationary phase growth. Cyclopropane fatty acid synthetase activity was assayed in cultures at various stages of growth. Cultures from all growth stages examined had the same specific activity in crude extracts.  相似文献   

19.
Sphingomyelins were isolated from mucosal layers of bovine rennet stomach, duodenum, jejunoileum, and colon ascendens. The ceramides obtained after phospholipase degradation were characterized by thin-layer chromatography, mass spectrometry, and gas-liquid chromatography. The main ceramide group from all regions consisted of dihydroxy long-chain bases and normal fatty acids. Sphingosine was the predominant base in all these fractions, and only in rennet stomach were smaller amounts of the C17 and C20 homologs present. Normal saturated C16, C18, C22, and C24 fatty acids were most abundant. In rennet stomach there was in addition a ceramide group having dihydroxy long-chain bases in combination with hydroxy fatty acids. Sphingosine was the predominant long-chain base and the fatty acids were 2-hydroxy C16, C22, C23, and C24. From jejunoileum three minor ceramide fractions were isolated; these consisted of phytosphingosine and normal fatty acids C22-C24), sphingosine and 2-hydroxy fatty acids (C16-C24), and phytosphingosine and 2-hydroxy fatty acids (C22-C24), respectively. No branched paraffin chains were found in significant amounts. Sphingomyelins with trihydroxy long-chain bases and 2-hydroxy fatty acids found in jejunoileum were also detected in bovine kidney and have not been demonstrated before. These sphingomyelins from both kidney and jejunoileum showed a preferential combination of trihydroxy bases and fatty acids with very long chains (C22-C24).  相似文献   

20.
The lipid composition was affected by growth temperature in Anacystis nidulans, but was not in Anabaena variabilis. A. variabilis contained fatty acids of 18 and 16 carbon atoms, which were localized at 1- and 2-positions, respectively, of the glycerol moiety of lipids. Desaturation of C18 acids was affected by the growth temperature. A. nidulans contained fatty acids of 14, 16 and 18 carbon atoms. Monounsaturated and saturated acids were esterified mainly to 1- and 2-position, respectively. Desaturation and chain length of fatty acids were influenced by the growth temperature. The variations in lipid and fatty acid compositions with the growth temperature are discussed in relation to the growth temperature-dependent shift of thermotropic phase transition temperature of the membrane lipids in the blue-green algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号