首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a promising candidate for biodiesel production, the green alga Chlorella protothecoides can efficiently produce oleaginous biomass and the lipid biosynthesis is greatly influenced by the availability of nitrogen source and corresponding nitrogen assimilation pathways. Based on isotope‐assisted kinetic flux profiling (KFP), the fluxes through the nitrogen utilization pathway were quantitatively analyzed. We found that autotrophic C. protothecoides cells absorbed ammonium mainly through glutamate dehydrogenase (GDH), and partially through glutamine synthetase (GS), which was the rate‐limiting enzyme of nitrogen assimilation process with rare metabolic activity of glutamine oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase); whereas under heterotrophic conditions, the cells adapted to GS‐GOGAT cycle for nitrogen assimilation in which GS reaction rate was associated with GOGAT activity. The fact that C. protothecoides chooses the adenosine triphosphate‐free and less ammonium‐affinity GDH pathway, or alternatively the energy‐consuming GS‐GOGAT cycle with high ammonium affinity for nitrogen assimilation, highlights the metabolic adaptability of C. protothecoides exposed to altered nitrogen conditions.  相似文献   

2.
本文测定了浑球红假单胞菌(Rhodobacter sphaeroides)菌株601谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷氨酸脱氢酶(GDH)和丙氨酸脱氢酶(ADH)的活性。低氨时,GS/GOGAT活力高,GDH活力低,高氨时,GS/GOGAT活力低,GDH活力高。在以分子氮或低浓度氨为氮源的培养条件下,加入GS抑制刑MSX(L—methionine—DL—sulphoximine),细菌生长受到抑制。但是,生长在以谷氨酸为氮源的细菌则不受影响。上述结果表明,浑球红假单胞菌菌株601氨同化是通过GS/GOGAT途径和GDH途径。  相似文献   

3.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

4.
NaCl对水稻谷氨酸合酶和谷氨酸脱氢酶的胁迫作用   总被引:19,自引:1,他引:18  
在NaCl的胁迫下,水稻幼苗根和叶的谷氨酸合酶和谷氨酸脱氢酶的活性随着营养液中的NaCl浓度的升高而降低;游离NH4^+在叶中积累,在根中未见明显变化。与根相比,叶对NaCl的胁迫作用更为敏感。叶的NADH-GOGAT和NADH-GDH活性在NaCl胁迫降低的程度明显大于根。无论是否有NaCl存在,根的NADH-GDH活性明显高于叶。GS/GDH比值分析提示,对对照下,根中的NH4^存在,根的NA  相似文献   

5.
In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine–glutamate translocator. Glutamine–glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S‐adenosylmethionine synthesis is guaranteed.  相似文献   

6.
泛素-蛋白酶体降解途径在细胞周期调控中的作用   总被引:6,自引:0,他引:6  
细胞周期的进程由一系列细胞周期蛋白依赖性激酶(CDK)和CDK活性调节因子驱动。泛素-蛋白酶体对细胞周期调节因子的降解是细胞调控分裂进程的重要手段。CDK活性抑制因子的降解是细胞分裂所必需的,而细胞周期正调控因子的降解则对维持细胞稳态至关重要。本从参与调控的2类泛素连接酶SCF复合物、APC/C复合物的结构和功能的角度阐述了泛素-蛋白酶体降解途径在整个细胞周期调控中的作用和意义。  相似文献   

7.
The influence of increased nitrate concentration—14 (control) and 140 mmol L−1 (T)—in hydroponic culture on ammonia assimilation in cucumber (Cucumis sativus L. cv. Xintaimici) seedlings was investigated. The results showed that NH3 accumulation in the roots and leaves of T seedlings increased significantly, indicating that NH3 toxicity might be involved in nitrate stress. Under control conditions, GS and GOGAT activity were much higher in the leaves than in the roots, whereas GDH activity was much higher in the roots than in the leaves. Correlation analysis showed that NH3 concentration had a strong negative linear relationship with GDH activity in the roots but had a strong negative linear relationship with GS and GOGAT activity in the leaves. These results indicate that NH3 might be assimilated primarily via GDH reaction in the roots and via GS/GOGAT cycle in the leaves. Short-term nitrate stress resulted in the increase of GS and GOGAT activity in the roots and GDH activity in the leaves of T seedlings, indicating possible shifts in ammonia assimilation from the normal GDH pathway to GS/GOGAT pathway in the roots and from the normal GS/GOGAT pathway to the GDH pathway in the leaves under nitrate stress, but with the increase of treatment time, GS, GOGAT, and GDH activity in the roots and leaves of T seedlings decreased possibly due to low water potential and NH3 toxicity.  相似文献   

8.
在发育的新生组织中 ,来自种子胚乳储存蛋白的降解和氨基酸分解代谢产生的氨由谷氨酰胺合成酶 ( Glutamine synthetase,GS)重新同化 ,生成的谷氨酰胺 ( Gln)被转运到正在生长着的部分。GS是高等植物氮素代谢的关键酶 [1] ,这个酶能同化不同来源的氨。 GS有多种同工酶 ,存在于植物的各种组织和器官中。它们是由一小的同源但分离的核基因家族编码的 [2 3 ] ,这些不同的 GS在植物氮素同化中起着非重叠的作用 [4] ,它们的表达受到环境、发育进程以及组织或细胞类型等许多因素的影响。在大多数已研究过的植物叶片中存在两种 GS,即胞液型GS(…  相似文献   

9.
Wild Type (WT) and transgenic tobacco plants expressing isopentenyltransferase (IPT), a gene encoding the enzyme regulating the rate-limiting step in cytokinins (CKs) synthesis, were grown under limited nitrogen (N) conditions. We analyzed nitrogen forms, nitrogen metabolism related-enzymes, amino acids and photorespiration related-enzymes in WT and PSARK∷IPT tobacco plants. Our results indicate that the WT plants subjected to N deficiency displayed reduced nitrate (NO3) assimilation. However, an increase in the production of ammonium (NH4+), by the degradation of proteins and photorespiration led to an increase in the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle in WT plants. In these plants, the amounts of amino acids decreased with N deficiency, although the relative amounts of glutamate and glutamine increased with N deficiency. Although the transgenic plants expressing PSARK∷IPT and growing under suboptimal N conditions displayed a significant decline in the N forms in the leaf, they maintained the GS/GOGAT cycle at control levels. Our results suggest that, under N deficiency, CKs prevented the generation and assimilation of NH4+ by increasing such processes as photorespiration, protein degradation, the GS/GOGAT cycle, and the formation of glutamine.  相似文献   

10.
Glutamine synthetase (GS, EC 6.3.1.2) and glutamate synthase (GOGAT, EC 1.4.1.13) were purified from Sclerotinia sclerotiorum and some of their properties studied. The GS transferase and biosynthetic activities, as well as GOGAT activity, were sensitive to feedback inhibition by amino acids and other metabolites. GS showed a marked dependence on ADP in the transferase reaction and on ATP in the Mg2+-dependent biosynthetic reaction. Regulation of GS activity by adenylylation/deadenylylation was demonstrated by snake venom phosphodiesterase treatment of the purified enzyme. GOGAT required NADPH as an electron donor; NADH was inactive. GOGAT was strongly inhibited by p-chloromercuribenzoate and the inhibition was reversed by cysteine. The enzyme was also markedly inhibited by o-phenanthroline, 2,2′-bipyridyl and azaserine. l-Methionine-dl-sulphoximine (MSX) and azaserine inhibited the incorporation of 15N-labelled ammonium sulphate into washed cells of S. sclerotiorum. MSX and azaserine respectively also inhibited purified GS and GOGAT activities. GDH activity was not detected in cell-extracts. Thus the GS/GOGAT pathway is the main route for the assimilation of ammonium compounds in this fungus.  相似文献   

11.
Specific enzymes of ammonium assimilation were measured in cell-free extracts ofNocardia asteroides grown in a synthetic medium with glutamate as the nitrogen source. Cell-free extracts had active glutamine synthetase (GS) and glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) but glutamate dehydrogenase (GDH) could not be detected in the enzyme preparation. This shows that GS/GOGAT is the major pathway of ammonium assimilation inN. asteroides.  相似文献   

12.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

13.
14.
Ammonia assimilation in chloroplasts occurs via the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. To determine the extent to which these enzymes contribute to the control of ammonia assimilation, a metabolic control analysis was performed on isolated barley (Hordeum vulgare L.) leaf chloroplasts. Pathway flux was measured polarographically as ammonium-plus-2-oxoglutarate-plus-glutamine-dependent O2 evolution in illuminated chloroplasts. Enzyme activity was modulated by titration with specific, irreversible inhibitors of GS (phosphinothricin) and GOGAT (azaserine). Flux control coefficients (CJ0E0) were determined (a) by differentiation of best-fit hyperbolic curves of the data sets (flux versus enzyme activity), and (b) from estimates of the deviation indices (D/[prime]E0). Both analyses gave similar values for the coefficients. The control coefficient for GS was relatively high and the value did not change significantly with changes in 2-oxoglutarate concentration (C/0E0 = 0.58 at 5 mM 2-oxoglutarate and 0.40 at 20 mM 2-oxoglutarate). The control coefficient for GOGAT decreased with decreasing glutamine concentrations, from 0.76 at 20 mM glutamine to 0.19 at 10 mM glutamine. Thus, at high concentrations of glutamine, GOGAT exerts a major control over flux with a significant contribution also from GS. At lower concentrations of glutamine, however, GOGAT exerts far less control over pathway flux.  相似文献   

15.
After the addition of ammonia to the culture medium, the concentration of glutamine in B. flavum cells increased in 20 s with a decrease in glutamate. In the subsequent 30 s, the glutamine concentration deceased again with an increase in glutamate. An enzyme system, which consisted of purified glutamine synthetase (GS) and glutamate synthase (GOGAT) with ATP- and NADPH-regenerating systems, was made up to study the functions of the GS/GOGAT pathway: concentrations of the substrates and of the enzymes were decided on according to the intracellular conditions. Changes in the concentrations of amino acids caused by the addition of ammonia to the system were very similar to those of intracellular glutamate and glutamine when ammonia was added to the bacterial culture. The time required for the complete formation of glutamate from 0.5 mM ammonia was about 4-times shorter in the GS/GOGAT system than in the system using purified glutamate dehydrogenase (GDH) and the NADPH-regenerating system. The glutamate synthase reaction in the GS/GOGAT system was inhibited by some amino acids much more markedly than in the standard assay mixture consisting of glutamine, α-ketoglutarate and NADPH. These results gave further evidence elucidating the operation of the GS/GOGAT pathway in ammonia assimilation, and suggested that a reconstructed enzyme system is useful for studying physiological mechanisms.  相似文献   

16.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

17.
The PI3K/Akt/mTOR signaling pathway plays a key regulatory function in cell survival, proliferation, migration, metabolism and apoptosis. Aberrant activation of the PI3K/Akt/mTOR pathway is found in many types of cancer and thus plays a major role in breast cancer cell proliferation. In our previous studies, benzo[b]furan derivatives were evaluated for their anticancer activity and the lead compounds identified were 26 and 36. These observations prompted us to investigate the molecular mechanism and apoptotic pathway of these lead molecules against breast cancer cells. Benzo[b]furan derivatives (26 and 36) were evaluated for their antiproliferative activity against human breast cancer cell lines MCF-7 and MDA MB-231. These compounds (26 and 36) have shown potent efficiency against breast cancer cells (MCF-7) with IC50 values 0.057 and 0.051 μM respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. Western blot analysis revealed that these compounds inhibit the PI3K/Akt/mTOR signaling pathway and induced mitochondrial mediated apoptosis in human breast cancer cells (MCF-7).  相似文献   

18.
Activities and properties of the ammonium assimilation enzymes NADP+-dependent glutamate dehydrogenase (GDH), glutamate synthase (GOGAT) and glutamine synthetase (GS) were determined in batch and continuous cultures of Candida albicans. NADP+-dependent GDH activity showed allosteric kinetics, with an S0.5 for 2-oxoglutarate of 7.5 mM and an apparent Km for ammonium of 5.0 mM. GOGAT activity was affected by the buffer used for extraction and assay, but in phosphate buffer, kinetics were hyperbolic, yielding Km values for glutamine of 750 microM and for 2-oxoglutarate of 65 microM. The enzymes GOGAT and NADP+-dependent GDH were also assayed in batch cultures of Saccharomyces cerevisiae and three other pathogenic Candida spp.: Candida tropicalis, Candida pseudotropicalis and Candida parapsilosis. Evidence is presented that GS/GOGAT is a major pathway for ammonium assimilation in Candida albicans and that this pathway is also significant in other Candida species.  相似文献   

19.
IL-1 inhibits the proliferation of human melanoma cells A375 by arresting the cell cycle at G0/G1 phase, which accompanies the increase of p21Waf1/Cip1 (p21) protein. Here, we demonstrate that IL-1 induces the stabilization of p21 protein via ERK1/2 pathway. The degradation of p21 was inhibited by IL-1, however the ubiquitination level of p21 was not affected. In addition, the degradation of non-ubiquitinated form of lysine less mutant p21-K6R was also inhibited by IL-1, suggesting that IL-1 stabilized p21 protein via ubiquitin-independent pathway. Furthermore, the inhibition of p21 protein degradation was prevented by a selective inhibitor of ERK1/2 pathway, PD98059. These results suggest that IL-1-induced ERK1/2 activation leads to the up-regulation of p21 by inhibiting degradation via ubiquitin-independent pathway in human melanoma cells A375.  相似文献   

20.
Pathway Choice in Glutamate Synthesis in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Escherichia coli has two primary pathways for glutamate synthesis. The glutamine synthetase-glutamate synthase (GOGAT) pathway is essential for synthesis at low ammonium concentration and for regulation of the glutamine pool. The glutamate dehydrogenase (GDH) pathway is important during glucose-limited growth. It has been hypothesized that GDH is favored when the organism is stressed for energy, because the enzyme does not use ATP as does the GOGAT pathway. The results of competition experiments between the wild-type and a GDH-deficient mutant during glucose-limited growth in the presence of the nonmetabolizable glucose analog α-methylglucoside were consistent with the hypothesis. Enzyme measurements showed that levels of the enzymes of the glutamate pathways dropped as the organism passed from unrestricted to glucose-restricted growth. However, other conditions influencing pathway choice had no substantial effect on enzyme levels. Therefore, substrate availability and/or modulation of enzyme activity are likely to be major determinants of pathway choice in glutamate synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号