首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
DNA修复基因RAD24的分子克隆和序列分析   总被引:2,自引:0,他引:2  
利用缺口修复(gaprepair)方法克隆啤酒酵母(S.cerevisiae)野生型RAD24基因,并将其亚克隆到M13mp18和M13mp19,用双脱氧末端终止法对该基因的两条链均进行了序列测定,DNAStrider程序分析显示该基因编码268个氨基酸的蛋白质,基因缺失试验表明,该基因为细胞生存所必需。  相似文献   

2.
黄敏  杨业然  孙晓艳  张婷  郭彩霞 《遗传》2018,40(11):1007-1014
REV1是跨损伤聚合酶Y家族的重要成员之一,它不仅作为支架蛋白介导Y家族聚合酶招募至损伤位点完成跨损伤DNA合成(translesion DNA synthesis, TLS),还可利用自身的dCMP转移酶活性在一些损伤位点对侧整合dCMP参与TLS。此外,REV1也被报导参与调控同源重组修复。为进一步探讨REV1互作蛋白RAD51和RAD51C在其参与的同源重组修复通路中的调控作用,本研究采用脉冲氮激光微辐射实验,发现RAD51可调控REV1到双链断裂位点的募集。同时,免疫荧光实验结果证明REV1也反过来影响RAD51应答CPT损伤。然而敲低RAD51C并不影响REV1到DNA双链断裂位点的招募。结果表明,REV1和RAD51在HR通路中存在彼此相互调控的关系。  相似文献   

3.
4.
以YCplac系列带Trp、His和Ura标志基因的载体为骨架构建含野生型和经羟胺处理的突变型的啤酒酵母RAD24基因质粒,用质粒替换方法分离RAD24基因温度敏感突变株(rad24-ts3).紫外生存试验发现,rad24-ts3对紫外线敏感;同位素(3H-TdR,3H-UR,3H-Leu)参入试验表明,该突变株DNA、RNA及蛋白质合成均较野生型明显降低.  相似文献   

5.
本文用两种DNA介导的基因转移法(DNA—磷酸钙共沉淀法和电脉冲刺激法),将具有切除修复功能的人HeLaS3细胞的DNA,植入切除修复缺陷的着色性干皮症(XP)细胞中。实验结果表明:植入HeLaS3 DNA后,可以部份恢复XP细胞DNA切除修复的功能,提高其对紫外线辐射损伤的抗性。表现为转化细胞在UV_(254)照射后存活率的显著升高和非周期DNA合成能力的增强。  相似文献   

6.
DNA切除修复与转录偶联   总被引:1,自引:0,他引:1       下载免费PDF全文
细胞DNA受到某些环境理化因子损伤后,其中活性转录基因和DNA转录链上的损伤被优先切除修复,这种DNA选择性修复直接与基因转录过程偶联.在大肠杆菌中已分离到实现此功能的转录修复偶联因子(TRCF),是由mdf基因编码的一种具有ATPase活性的DNA结合蛋白.在真核细胞中,发现某些DNA修复蛋白也在DNA转录中起作用,如人DNA切除修复基因ERCG-3编码产物,是转录因子TFⅡH中最大亚基p89,酵母切除修复基因RAD3就是编码因子b的最大亚基p85.  相似文献   

7.
利用缺口修复(gaprepair)方法克隆啤酒酵母(S.cerevisiae)野生型RAD_(24)基因,并将其亚克隆到M13mp18和M13mp19,用双脱氧末端终止法对该基因的两条链均进行了序列测定。DNAStrider程序分析显示该基因编码268个氨基酸的蛋白质;基因缺失试验表明,该基因为细胞生存所必需。  相似文献   

8.
9.
低温对紫外照射诱导人乳腺癌细胞凋亡的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Hoechst 33258荧光染色技术,透射电镜,流式细胞术研究低温对紫外照射诱导体外培养的人乳腺癌细胞凋亡的影响。结果显示:4℃低温处理可增强紫外照射诱导人乳腺癌细胞凋亡,且低温增强细胞凋亡具有时间效应和剂量效应关系。细胞经4℃处理0,12,24h并照射6min,在培养6h后各实验组细胞的调亡率开始升高,与培养0h时相比差异显著(P〈0.01),培养12 ̄18h时达到高峰(15.46-64.  相似文献   

10.
DNA的损伤修复是一个多因子参与的、多环节的复杂修复系统。p53基因以多条信号通路,多种调控方式参与DNA修复。它可以通过其下游一系列靶基因p21、gadd45等调控细胞周期,使细胞停滞于G1期、G2期等检测点,从而使受损DNA有足够的时间进行多因子参与的修复过程;也可以与DNA修复因子PRSA、PCNA、XPp48基因等相互作用,直接参与DNA修复;还可以蛋白-蛋白相互作用参与DNA修复。  相似文献   

11.
12.
During the last decade, the use of small molecule (MW <500 Da) compounds that modulate (inhibit or activate) important proteins of different biological pathways became widespread. Recently, the homologous recombination (HR) pathway emerged as a target for such modulators. Development of small molecule modulators pursues two distinct but not mutually exclusive purposes: to create a research tool to study the activities or functions of proteins of interest and to produce drugs targeting specific pathologies. Here, we review the progress of small molecule development in the area of HR.  相似文献   

13.
A novel endonuclease, a new member of the RAD2 nuclease family, has been identified from the higher plant, rice (Oryza sativa L. cv. Nipponbare), and designated as OsSEND-1. The open reading frame of the OsSEND-1 cDNA encoded a predicted product of 641 amino acid residues with a molecular weight of 69.9 kDa. The encoded protein showed a relatively high degree of sequence homology with the RAD2 nuclease family proteins, especially RAD2 nuclease, but it differed markedly from FEN-1, XPG or HEX1/EXO1. The N- and I-domains in the family were highly conserved in the OsSEND-1 sequence. The protein was much smaller than XPG, but larger than HEX1/EXO1 and FEN-1. The genome sequence was composed of 14 exons, and was localized at the almost terminal region of the short arm of chromosome 8. Northern blotting and in situ hybridization analyses demonstrated preferential expression of OsSEND-1 mRNA in proliferating tissues such as meristem. The mRNA level of OsSEND-1 was induced by UV and DNA-damaging agent such as MMS or H2O2, indicating that OsSEND-1 has some roles in the repair of many types of damaged DNA. The recombinant peptide showed endonuclease activity.  相似文献   

14.
15.
    
Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double‐strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA‐TELANGIECTASIA MUTATED–SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co‐localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana.  相似文献   

16.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.  相似文献   

17.
The RAD 51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a significant role in both mitotic and meiotic homologous recombination. Here, we demonstrate that short-term silencing of the Rad51 gene by specific small interfering RNA (siRNA) that inhibits cell proliferation and reduces the viability of most cells. Cells with suppressed expression of Rad51 gene have altered cell cycles and accumulate in the S and G2 phases. Our findings show that the disruption of homologous recombination leads to cell death. However, some cells, e.g., MCF-7 cells, are insensitive to the suppression of Rad51 gene expression.  相似文献   

18.
  总被引:3,自引:0,他引:3  
In addition to the recombinase Rad51, vertebrates have five paralogs of Rad51, all members of the Rad51-dependent recombination pathway. These paralogs form two complexes (Rad51C/Xrcc3 and Rad51B/C/D/Xrcc2), which play roles in somatic recombination, DNA repair and chromosome stability. However, little is known of their possible involvement in meiosis, due to the inviability of the corresponding knockout mice. We have recently reported that the Arabidopsis homolog of one of these Rad51 paralogs (AtXrcc3) is involved in DNA repair and meiotic recombination and present here Arabidopsis lines carrying mutations in three other Rad51 paralogs (AtRad51B, AtRad51C and AtXrcc2). Disruption of any one of these paralogs confers hypersensitivity to the DNA cross-linking agent Mitomycin C, but not to gamma-irradiation. Moreover, the atrad51c-1 mutant is the only one of these to show meiotic defects similar to those of the atxrcc3 mutant, and thus only the Rad51C/Xrcc3 complex is required to achieve meiosis. These results support conservation of functions of the Rad51 paralogs between vertebrates and plants and differing requirements for the Rad51 paralogs in meiosis and DNA repair.  相似文献   

19.
Homothallic Saccharomyces cerevisiae strains switch their mating-type in a specific gene conversion event induced by a DNA double strand break made by the HO endonuclease. The RAD52 group genes control recombinational repair of DNA double strand breaks, and we examined their role in native homothallic mating-type switching. Surprisingly, we found that the Rad54 protein was important but not essential for mating-type switching under natural conditions. As an upper limit, we estimate that 29% of the rad54 spore clones can successfully switch their mating-type. The RAD55 and RAD57 gene products were even less important, but their presence increased the efficiency of the process. In contrast, the RAD51 and RAD52 genes are essential for homothallic mating-type switching. We propose that mating-type switching in RAD54 mutants occurs stochastically with a low probability, possibly reflecting different states of chromosomal structure. Received: 3 August 1998 / Accepted: 22 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号