首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We have established a cell culture system that reproduces morphogenic processes in the developing mammary gland. EpH4 mouse mammary epithelial cells cultured in matrigel form branched tubules in the presence of hepatocyte growth factor/scatter factor (HGF/SF), the ligand of the c-met tyrosine kinase receptor. In contrast, alveolar structures are formed in the presence of neuregulin, a ligand of c-erbB tyrosine kinase receptors. These distinct morphogenic responses can also be observed with selected human mammary carcinoma tissue in explant culture. HGF/SF-induced branching was abrogated by the PI3 kinase inhibitors wortmannin and LY294002. In contrast, neuregulin- induced alveolar morphogenesis was inhibited by the MAPK kinase inhibitor PD98059. The c-met–mediated response could also be evoked by transfection of a c-met specific substrate, Gab1, which can activate the PI3 kinase pathway. An activated hybrid receptor that contained the intracellular domain of c-erbB2 receptor suffices to induce alveolar morphogenesis, and was observed in the presence of tyrosine residues Y1028, Y1144, Y1201, and Y1226/27 in the substrate-binding domain of c-erbB2. Our data demonstrate that c-met and c-erbB2 signaling elicit distinct morphogenic programs in mammary epithelial cells: formation of branched tubules relies on a pathway involving PI3 kinase, whereas alveolar morphogenesis requires MAPK kinase.  相似文献   

2.
We have examined the role of two mesenchymal ligands of epithelial tyrosine kinase receptors in mouse mammary gland morphogenesis. In organ cultures of mammary glands, hepatocyte growth factor (HGF, scatter factor) promoted branching of the ductal trees but inhibited the production of secretory proteins. Neuregulin (NRG, neu differentiation factor) stimulated lobulo-alveolar budding and the production of milk proteins. These functional effects are paralleled by the expression of the two factors in vivo: HGF is produced in mesenchymal cells during ductal branching in the virgin animal; NRG is expressed in the mesenchyme during lobulo-alveolar development at pregnancy. The receptors of HGF and NRG (c-met, c-erbB3, and c-erbB4), which are expressed in the epithelial cells, are not regulated. In organ culture, branching morphogenesis and lobulo-alveolar differentiation of the mammary gland could be abolished by blocking expression of endogenous HGF and NRG by the respective antisense oligonucleotides; in antisense oligonucleotide-treated glands, morphogenesis could again be induced by the addition of recombinant HGF and NRG. We thus show that two major postnatal morphogenic periods of mammary gland development are dependent on sequential mesenchymal- epithelial interactions mediated by HGF and NRG.  相似文献   

3.
We have recently demonstrated the regulated expression ofHGF/SFand its receptor (c-met) during mouse mammary gland development together with the mitogenic, motogenic and morphogenic effects of exogenous HGF/SF on primary mammary epithelial cells in culture. This study was undertaken to analyze the influence of HGF/SF on reconstituted mouse mammary gland developmentin vivo.Here we report that overexpression of HGF/SF induces a range of alterations in the architecture of virgin mouse mammary gland. These include an enhancement of ductal end bud (mammary gland morphoregulatory control point) size and numbers and hyperplastic branching morphogenesis. These data are the first demonstration of the effects of HGF/SF on mammary epitheliumin vivo.  相似文献   

4.
The H19 gene is an imprinted gene expressed from the maternal allele. It is known to function as an RNA molecule. We previously reported that in breast adenocarcinoma, H19 is often overexpressed in stromal cells and preferentially located at the epithelium/stroma boundary, suggesting that epithelial/mesenchymal interactions can control H19 RNA expression. In some cases of breast adenocarcinoma with poor prognosis, H19 is overexpressed in epithelial cells. Therefore we examined whether mesenchymal factors can induce H19 expression in epithelial cells. Using quantitative RT-PCR and in situ hybridization, we found that when mammary epithelial cells were cultured in collagen gels, H19 expression was strongly up-regulated compared to when cells were cultured on plastic. Collagen gels allow three-dimensional growth of epithelial cells and morphogenetic responses to soluble factors. A conditioned medium from MRC-5 fibroblasts caused branching morphogenesis of HBL-100 cells and invasive growth of MDA-MB-231 cells, whereas MCF-7 cells were unresponsive. Induction of H19 expression correlated with morphological changes in HBL-100 and in MDA-MB-231 cells, whereas H19 expression was not induced in MCF-7 cells. Using a blocking antibody, HGF/SF was identified as the fibroblast-derived growth factor capable of inducing H19 expression and cell morphogenesis. We further demonstrated that H19 promoter activity was stimulated by various growth factors using transient transfection in MDCK epithelial cells. HGF/SF was more efficient than EGF or FGF-2 in transactivating the H19 promoter, whereas IGF-2, TGFbeta-1, and TNF-alpha were ineffective. This activation by HGF/SF was prevented by pharmacological inhibition of MAP kinase or of phospholipase C. We conclude that H19 is a target gene for HGF/SF, a known regulator of epithelial/mesenchymal interactions, and suggest that the up-regulation of H19 may be implicated in morphogenesis and/or migration of epithelial cells.  相似文献   

5.
6.
Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.  相似文献   

7.
Summary EpH4 is a nontumorigenic cell line derived from spontaneously immortalized mouse mammary gland epithelial cells (Fialka et al., 1996). When grown in collagen gels, EpH4 cells give rise to different types of structures, e.g., solid cords or branching tubes. By removing and subsequently dissociating single three-dimensional colonies of defined morphology, we have isolated six clonal subpopulations of EpH4 cells which display distinct morphogenetic properties in collagen gel cultures. Thus, cells from the H1B clone form branching cords devoid of a central lumen, K3A3 cells from cords enclosing small multifocal lumina, and J3B1 cells form large cavitary structures containing a wide lumen. I3G2 cells form either cords or tubes, depending on the type of serum added to the culture medium. Finally, when grown in serum-free medium, Be1a cells form spherical cysts, whereas Be4a cells form long, extensively branched tubes. In additional assays of morphogenesis, i.e., cell sandwiching between two collagen gels or culture on a thick layer of Matrigel (a laminin-rich extracellular matrix), all clones form epithelial-cell-lined cavitary structures, except H1B cells which are unable to generate lumina under these conditions. The EpH4 sublines we have isolated provide an in vitro system for studying the mechanisms responsible for lumen formation and branching morphogenesis, as well as for identifying the factors which subvert these developmental processes during mammary carcinogenesis.  相似文献   

8.
To assess the role of hepatocyte growth factor (HGF) and androgen in growth of prostate epithelial cells, we isolated mouse ventral prostate epithelial cells and cultured them in a three-dimensional type I collagen gel matrix under serum-free conditions. Although the prostate epithelial cells tended to die in the insulin-supplemented basal medium, 5alpha-dihydrotestosterone (DHT) prevented the cell death, and HGF slightly stimulated the growth. By contrast, coexistence of DHT and HGF greatly augmented the growth and branching morphogenesis of the epithelial cells. Some of the outgrowths formed under these conditions showed enlarged structures resembling the prostate ducts or alveoli. Examination of the stromal cell-conditioned medium revealed that a growth-stimulating activity is present in the conditioned medium. A major portion of this activity was abolished by anti-HGF IgG. These observations suggest that HGF is produced by the stromal cells of the prostate gland and supports the androgen stimulation of growth of the epithelial cells.  相似文献   

9.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

10.
11.
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.  相似文献   

12.
R Montesano  K Matsumoto  T Nakamura  L Orci 《Cell》1991,67(5):901-908
We have previously shown that Madin-Darby canine kidney (MDCK) epithelial cells grown in collagen gels in the presence of fibroblasts or fibroblast-conditioned medium (CM) form branching tubules, instead of the spherical cysts that develop under control conditions. We now report that the fibroblast-derived molecule responsible for epithelial tubulogenesis is hepatocyte growth factor (HGF). First, addition of exogenous HGF to cultures of MDCK cells induces formation of epithelial tubules. Second, the tubulogenic activity of fibroblast CM is completely abrogated by antibodies to HGF. These results demonstrate that HGF, a polypeptide that was identified as a mitogen for cultured hepatocytes, has the properties of a paracrine mediator of epithelial morphogenesis, and suggest that it may play important roles in the formation of parenchymal organs during embryonic development.  相似文献   

13.
Cripto-1 is an EGF-CFC protein that performs an important role during early vertebrate development and is overexpressed in several types of human cancer. In the present study mouse EpH4, NMuMG, and TAC-2 mammary epithelial cells that are negative for endogenous cripto-1 expression were transfected with the murine cripto-1 cDNA. Cripto-1-transfected cell lines exhibited functional and physiological differences from the original cell lines including enhanced anchorage-independent growth in soft agar (EpH4 cells), growth in serum-free medium, increased proliferation, and formation of branching, duct-like structures when grown in a three-dimensional collagen type I matrix. Furthermore, cripto-1-expressing cell lines showed elevated migration in vitro in Boyden chamber and wound-healing assays. These results indicate that cripto-1 can function through an autocrine pathway that enables mammary epithelial cells to undergo an epithelial to mesenchymal transition.  相似文献   

14.
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.  相似文献   

15.

Background

Mammary gland morphogenesis involves ductal elongation, branching, and budding. All of these processes are mediated by stroma - epithelium interactions. Biomechanical factors, such as matrix stiffness, have been established as important factors in these interactions. For example, epithelial cells fail to form normal acinar structures in vitro in 3D gels that exceed the stiffness of a normal mammary gland. Additionally, heterogeneity in the spatial distribution of acini and ducts within individual collagen gels suggests that local organization of the matrix may guide morphogenesis. Here, we quantified the effects of both bulk material stiffness and local collagen fiber arrangement on epithelial morphogenesis.

Results

The formation of ducts and acini from single cells and the reorganization of the collagen fiber network were quantified using time-lapse confocal microscopy. MCF10A cells organized the surrounding collagen fibers during the first twelve hours after seeding. Collagen fiber density and alignment relative to the epithelial surface significantly increased within the first twelve hours and were a major influence in the shaping of the mammary epithelium. The addition of Matrigel to the collagen fiber network impaired cell-mediated reorganization of the matrix and increased the probability of spheroidal acini rather than branching ducts. The mechanical anisotropy created by regions of highly aligned collagen fibers facilitated elongation and branching, which was significantly correlated with fiber organization. In contrast, changes in bulk stiffness were not a strong predictor of this epithelial morphology.

Conclusions

Localized regions of collagen fiber alignment are required for ductal elongation and branching suggesting the importance of local mechanical anisotropy in mammary epithelial morphogenesis. Similar principles may govern the morphology of branching and budding in other tissues and organs.  相似文献   

16.
In vitro morphogenesis of epithelial cells to form tube-like structures is regulated by hepatocyte growth factor-scatter factor (HGF/SF). The placenta is a rich source of HGF/SF, and its absence in mice has been shown to lead to impaired placental growth and embryonic death. There is no information in the literature regarding in vitro morphogenesis of human cytotrophoblasts or the effect of HGF/SF on this process. In this study, cytotrophoblasts were isolated from human placentae obtained from all three trimesters of gestation and cultured on the recombinant basement membrane matrix (Matrigel). Under these conditions, cytotrophoblasts participated in morphogenetic events including formation of spheroid-like structures, radial linear processes with branching, and invaded Matrigel and formed large, tube-like structures. The presence of a developing lumen was documented in the linear projections arising from spheroids and in the tube-like structures by both confocal and transmission electron microscopy. Immunohistochemistry was used to characterize the phenotype of the cells, and staining with anti-cytokeratin and anti-E-cadherin antibodies confirmed the presence of cytotrophoblasts in both the spheroids and tube-like structures. Recombinant HGF (rHGF) significantly increased the invasive activity of cytotrophoblasts isolated from the first and second (P < 0.001) and third trimesters (P < 0.01). In addition, rHGF significantly increased the percentage of spheroids with branching processes in the first and second trimesters (P < 0.05). Anti-HGF antibody inhibited both these effects in a dose-dependent manner, indicating the specificity of the above findings. This study provides new evidence indicating that HGF/SF regulates invasion and branching morphogenesis of cytotrophoblasts throughout gestation, with maximum effects in the first and second trimester. These findings may help to elucidate the importance of the reduced expression of HGF/SF identified in placentae from women with preeclampsia or intrauterine growth restriction and suggest that HGF/SF may serve as an important candidate in therapeutic intervention strategies.  相似文献   

17.
During puberty, mouse mammary epithelial ducts invade the stromal mammary fat pad in a wave of branching morphogenesis to form a complex ductal tree. Using pharmacologic and genetic approaches, we find that mammary gland branching morphogenesis requires transient matrix metalloproteinase (MMP) activity for invasion and branch point selection. MMP-2, but not MMP-9, facilitates terminal end bud invasion by inhibiting epithelial cell apoptosis at the start of puberty. Unexpectedly, MMP-2 also represses precocious lateral branching during mid-puberty. In contrast, MMP-3 induces secondary and tertiary lateral branching of ducts during mid-puberty and early pregnancy. Nevertheless, the mammary gland is able to develop lactational competence in MMP mutant mice. Thus, specific MMPs refine the mammary branching pattern by distinct mechanisms during mammary gland branching morphogenesis.  相似文献   

18.
Hepatocyte growth factor (HGF)-induced tubulogenesis has been demonstrated with renal epithelial cell lines grown in collagen gels but not with primary cultured renal proximal tubular epithelial cells (RPTEs). We show that HGF selectively induces proliferation and branching morphogenesis of primary cultured rat RPTEs. Additional growth factors including fibroblast growth factor (FGF)-1, epidermal growth factor (EGF), FGF-7, or insulin-like growth factor-1 (IGF-1) did not selectively induce tubulogenesis. However, when administered in combination, these factors initiated branching morphogenesis comparable to HGF alone and greatly augmented HGF-induced proliferation and branching. Microscopic analysis revealed that branching RPTEs were undergoing tubulogenesis and formed a polarized epithelium. TGF-β1 blocked HGF- or growth factor cocktail (GFC; HGF, FGF-1, EGF, IGF-1)-induced proliferation and branching morphogenesis. Adding TGF-β1 after GFC-induced tubulogenesis had occurred caused a progressive regression of the tubular structures, a response associated with an increase in apoptosis of the RPTEs. Primary cultured RPTEs are capable of undergoing HGF-induced tubulogenesis. Unlike cell lines, combinations of growth factors differentially augment the response. J. Cell. Physiol. 180:81–90, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
How to make tubes: signaling by the Met receptor tyrosine kinase   总被引:10,自引:0,他引:10  
Hepatocyte growth factor/scatter factor (HGF/SF), acting through the receptor tyrosine kinase Met, stimulates cells derived from a variety of different organs to form elongated hollow tubules when grown in three-dimensional gels. In vivo data also indicate a role for HGF/SF and Met in tubule formation during liver and kidney regeneration and mammary gland formation. Activation of Met results in the recruitment of a myriad of signal transducers that regulate dissociation of adherens junctions and the stimulation of cellular motility, survival, proliferation and morphogenesis during tubule formation. Among these many signal transducers, the Gab1 adaptor protein and its effector, the SHP2 tyrosine phosphatase, have been found to be crucial for tubulogenesis and for the sustained stimulation of the ERK/MAP kinase pathway. Here, we discuss the contribution of these and other signaling pathways and the role of HGF/SF and Met in the formation of epithelial cell tubules both in vitro in branching-morphogenesis assays and in vivo during organogenesis.  相似文献   

20.
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号