首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence and persistence of complex blooms comprising multiple toxigenic cyanobacteria genera pose significant challenges for water quality management worldwide. The co-occurrence of morphologically indistinguishable toxic and non-toxic strains makes monitoring and control of these noxious organisms particularly challenging. Conventional monitoring approaches are not only incapable of discriminating toxic from non-toxic strains but also have proven to be less sensitive and specific. In this study, a multiplex quantitative real-time polymerase chain reaction (qPCR) approach was developed and tested for its sensitivity and specificity at detecting, differentiating and estimating potentially toxic Anabaena, Microcystis and Planktothrix genotype compositions in environmental samples. The oligonucleotide primers and probes utilized were designed to target portions of the microcystin synthetase (mcy) E gene that encode synthesis of the unique 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (ADDA) moiety of microcystins in the three target genera. Laboratory evaluation showed the developed assay to be highly sensitive and specific at detecting and quantifying targeted genera. Indeed, the assay standards for the Anabaena, Microcystis and Planktothrix reactions attained efficiencies above 90 %, with coefficients of determination consistently above 0.99. Analysis of water samples from Missisquoi Bay, Quebec, Canada, resulted in successful detection and quantification of target toxigenic cyanobacteria even when cell numbers were below the detection limit for the conventional microscopy methods. Furthermore, toxigenic Microcystis spp. were found to be the main putative microcystin-producing cyanobacteria in the study lake. The qPCR technique developed in this study therefore offers simultaneous detection, differentiation and quantification of multiple toxigenic cyanobacteria that otherwise cannot be accomplished by current monitoring approaches.  相似文献   

2.
The reoccurrence of significant cyanobacterial blooms in Lake Erie during the last 13 years has raised questions concerning the long-term persistence of microcystin-producing cyanobacteria and the presence of natural sediment reservoirs for potentially toxic cyanobacteria in this large lake system. To address these questions, we analyzed phytoplankton and sediment samples which were collected and preserved in the 1970s as well as samples collected in 2004 from locations within Lake Erie. The identification of microcystin-producing cyanobacteria in Lake Erie was examined via PCR amplification of the mcyA gene fragment. Based on the high % sequence similarity, the mcyA sequences from all 1970s phytoplankton and sediment samples were determined to belong to Microcystis spp., in spite of reports suggesting that Lake Erie was dominated by filamentous cyanobacteria in the 1970s. In sediment samples from 2004, signature genes for Microcystis were distributed and preserved not only in the surface sediments but also up to 10–12 cm in depth. Based on cell quantities determined by a quantitative polymerase chain reaction (qPCR) method, 0.18% of eubacteria in the sediments were Microcystis cells, of which 4.8% were potential microcystin producers. In combination with experiments showing that Microcystis cells can be cultured from Lake Erie surface sediments, this paper demonstrates the potential for these sediments to act as a reservoir for pelagic Microcystis populations and that the composition of the population of microcystin-producing cyanobacteria in Lake Erie has not changed remarkably since the 1970s.  相似文献   

3.
The relationship between toxigenicity and phylogeny within the cyanobacterial genus Microcystis is unclear. To investigate this issue, we have designed PCR primers for the N-methyltransferase (NMT) domain of the microcystin synthetase gene mcyA and have probed 37 Microcystis sp. cultures as well as several field samples. The NMT region was present in all 18 laboratory strains that gave positive reactions in the protein phosphatase inhibition assay for microcystin but was absent in 17 nontoxic strains. Two other nontoxic strains, one of which had previously been reported to produce microcystin, possessed the NMT region. Detection of NMT-specific DNA in field samples corresponded to periods of toxicity as assessed by protein phosphatase inhibition. The Microcystis strains formed a monophyletic cluster based on 16S rRNA gene sequences but comprised two groups with respect to phycocyanin intergenic spacer (PC-IGS) sequences. Toxic and nontoxic strains appeared to be erratically distributed within the PC-IGS and 16S rRNA trees. Sequence analysis of the NMT domain revealed two coherent groups. The genomic region immediately downstream of the mcyABC cluster in all 20 NMT-positive strains contained an open reading frame of unknown function (uma1) at a conserved distance from mcyC. All nontoxic strains also contained uma1, which is not cotranscribed with mcyABC. The consistent linkage of mcyC to uma1 suggests that mcyC has not been frequently transferred into nontoxic strains via any mechanism involving insertion at random chromosomal locations. These results are discussed with respect to various mechanisms that could explain the patchy distribution of toxigenicity among the various Microcystis clades.  相似文献   

4.
This study presents a genetic characterization of 27 potentially toxic cyanobacterial strains isolated from seven reservoirs located in the north and centre of Tunisia. These strains belonged mainly to Microcystis aeruginosa, Cylindrospermopsis raciborskii and Planktothrix agardhii species. Their toxicological potential was evaluated by molecular biology tools, which showed that none of the isolated strains carried segments of the gene cluster responsible for the production of cylindrospermopsin and saxitoxin. The majority of Microcystis isolates were able to synthesize microcystin, since they presented the six characteristic segments of the microcystin synthetase mcy cluster (mcyA, -B, -C, -D, -E and -G). This was further confirmed by MALDI-TOF analysis that showed the presence of eight microcystin variants, including microcystin-LR. The taxonomic identification of the strains was assessed based on the variability of the 16S rRNA gene sequences. Furthermore, the 16S-23S rRNA ITS sequences of Microcystis isolates and rpoC1 sequences of Cylindrospermopsis strains were also used in the phylogenetic analysis.  相似文献   

5.
The diversity of microcystin-producing cyanobacteria in the western basin of Lake Erie was studied using sequence analysis of mcyA gene fragments. Distinct populations of potentially toxic Microcystis and Planktothrix were found in spatially isolated locations. This study highlights previously undocumented diversity of potentially toxic cyanobacteria.  相似文献   

6.
The production of food supplements containing cyanobacteria is a growing worldwide industry. While there have been several reports of health benefits that can be gained from the consumption of these supplements, there have also been a growing number of studies showing the presence of toxins some of which (for example microcystins) are known to affect human health. In this paper, we report a multiplex polymerase chain reaction (PCR) technique that can be used to identify microcystin contamination in dietary supplements produced for human consumption. This method involves a PCR reaction containing three primer pairs, the first of which is used to amplify a 220-bp fragment of 16s rDNA specific to Microcystis, the most common microcystin-producing cyanobacterium. The second primer pair is used to amplify a 300-bp fragment of the mcyA gene, linked to microcystin biosynthesis in Anabaena, Microcystis, and Planktothrix. A third primer pair, used as a positive control, results in the amplification of a 650-bp fragment from the phycocyanin operon common to all cyanobacteria. This technique was found to be useful for detecting the presence of toxigenic Microcystis in all dietary supplements produced from the nontoxic cyanobacterium Aphanizomenon flos-aquae.  相似文献   

7.
The aim of this study was to understand: (1) how environmental conditions can contribute to formation of Microcystis-dominated blooms in lowland, dam reservoirs in temperate climate—with the use of quantitative molecular monitoring, and (2) what is the role of toxic Microcystis genotypes in the bloom functioning. Monitoring of the Sulejow Reservoir in 2009 and 2010 in two sites Tresta (TR) and Bronislawow BR), which have different morphometry, showed that physicochemical conditions were always favorable for cyanobacterial bloom formation. In 2009, the average biomass of cyanobacteria reached 13 mg L?1 (TR) and 8 mg L?1 (BR), and in the second year, it decreased to approximately 1 mg L?1 (TR and BR). In turns, the mean number of toxic Microcystis genotypes in the total Microcystis reached 1 % in 2009, both in TR and BR, and in 2010, the number increased to 70 % in TR and 14 % in BR. Despite significant differences in the biomass of cyanobacteria in 2009 and 2010, the mean microcystins (MCs) concentration and toxicity stayed at a similar level of approximately 1 μg L?1. Statistical analysis indicated that water retention time was a factor that provided a significant difference between the two monitoring seasons and was considered a driver of the changes occurring in the Sulejow Reservoir. Hydrologic differences, which occurred between two studied years due to heavy flooding in Poland in 2010, influenced the decrease in number of Microcystis biomass by causing water disturbances and by lowering water temperature. Statistical analysis showed that Microcystis aeruginosa biomass and 16S rRNA gene copy number representing Microcystis genotypes in both years of monitoring could be predicted on the basis of total and dissolved phosphorus concentrations and water temperature. In present study, the number of mcyA gene copies representing toxic Microcystis genotypes could be predicted based on the biomass of M. aeruginosa. Moreover, MCs toxicity and concentration could be predicted on the basic of mcyA gene copy number and M. aeruginosa (biomass, 16S rRNA), respectively. Present findings may indicate that Microcystis can regulate the number of toxic genotypes, and in this way adjust the whole bloom to be able to produce MCs at the level which is necessary for its maintenance in the Sulejow Reservoir under stressful hydrological conditions.  相似文献   

8.
Recombination has been suggested to be an important factor for the genetic variation of bacterial genes, but few studies have dealt with intragenic recombination between the same or closely related species of cyanobacteria. Here we provide strong evidence for recombination in the microcystin synthetase (mcy) gene cluster of the toxic cyanobacteria Microcystis spp. This gene cluster contains 10 genes (mcyA to J) that encode a mixed polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) complex. mcy gene sequences were determined for four selected regions (within mcyA, D, G, and J) within the mcy gene cluster from 1 Canadian and 10 Asian toxic Microcystis and compared with previously published mcy sequences. Split decomposition analysis indicated a reticulate phylogeny of mcyA, and several potential recombination tracts of mcyA were identified by the RDP analysis and a runs test implemented in GENECONV. In contrast, no recombination was detected in the mcyD, G, and J sequences. However, discrepancies among the four mcy gene genealogies were evident from the results of independent split decomposition analyses, which were further supported by incongruence length difference (ILD) tests. Taken together, these findings suggest that both intragenic and intergenic recombination within the mcy gene cluster contributes to the genetic diversity of the mcy genes of Microcystis spp.This article contains online supplementary material.  相似文献   

9.
Microcystins are harmful hepatotoxins produced by many, but not all strains of the cyanobacterial genera Anabaena, Microcystis, Anabaena, Planktothrix, and Nostoc. Waterbodies have to be monitored for the mass development of toxic cyanobacteria; however, because of the close genetic relationship of microcystin-producing and non-producing strains within a genus, identification of microcystin-producers by morphological criteria is not possible. The genomes of microcystin-producing cells contain mcy genes coding for the microcystin synthetase complex. Based on the sequence information of mcy genes from Microcystis and Planktothrix, a primer pair for PCR amplification of a mcyA gene fragment was designed. PCR with this primer pair is a powerful means to identify microcystin-producing strains of the genera Anabaena, Microcystis, and Planktothrix. Moreover, subsequent RFLP analysis of the PCR products generated genus-specific fragments and allowed the genus of the toxin producer to be identified. The assay can be used with DNA from field samples.Abbreviations RFLP Restriction fragment length polymorphism - MALDI-TOF Matrix-assisted laser desorption/ionization-time of flight spectrometry - HPLC High performance liquid chromatography  相似文献   

10.
In temperate latitudes, toxic cyanobacteria blooms often occur in eutrophied ecosystems during warm months. Many common bloom-forming cyanobacteria have toxic and non-toxic strains which co-occur and are visually indistinguishable but can be quantified molecularly. Toxic Microcystis cells possess a suite of microcystin synthesis genes (mcyAmcyJ), while non-toxic strains do not. For this study, we assessed the temporal dynamics of toxic and non-toxic strains of Microcystis by quantifying the microcystin synthetase gene (mcyD) and the small subunit ribosomal RNA gene, 16S (an indicator of total Microcystis), from samples collected from four lakes across the Northeast US over a two-year period. Nutrient concentrations and water quality were measured and experiments were conducted which examined the effects of elevated levels of temperatures (+4 °C), nitrogen, and phosphorus on the growth rates of toxic and non-toxic strains of Microcystis. During the study, toxic Microcystis cells comprised between 12% and 100% of the total Microcystis population in Lake Ronkonkoma, NY, and between 0.01% and 6% in three other systems. In all lakes, molecular quantification of toxic (mcyD-possessing) Microcystis was a better predictor of in situ microcystin levels than total cyanobacteria, total Microcystis, chlorophyll a, or other factors, being significantly correlated with the toxin in every lake studied. Experimentally enhanced temperatures yielded significantly increased growth rates of toxic Microcystis in 83% of experiments conducted, but did so for non-toxic Microcystis in only 33% of experiments, suggesting that elevated temperatures yield more toxic Microcystis cells and/or cells with more mcyD copies per cell, with either scenario potentially yielding more toxic blooms. Furthermore, concurrent increases in temperature and P concentrations yielded the highest growth rates of toxic Microcystis cells in most experiments suggesting that future eutrophication and climatic warming may additively promote the growth of toxic, rather than non-toxic, populations of Microcystis, leading to blooms with higher microcystin content.  相似文献   

11.
While multiple phylogenetic markers have been used in the culture-independent study of microcystin-producing cyanobacteria, in only a few instances have multiple markers been studied within individual cells, and in all cases these studies have been conducted with cultured isolates. Here, we isolate and evaluate large DNA fragments (>6 kb) encompassing two genes involved in microcystin biosynthesis (mcyA2 and mcyB1) and use them to identify the source of gene fragments found in water samples. Further investigation of these gene loci from individual cyanobacterial cells allowed for improved analysis of the genetic diversity within microcystin producers as well as a method to predict microcystin variants for individuals. These efforts have also identified the source of the novel mcyA genotype previously termed Microcystis-like that is pervasive in the Laurentian Great Lakes and they predict the microcystin variant(s) that it produces.Microcystin-producing cyanobacteria are common nuisance organisms in harmful algal blooms in freshwaters around the world (4). This genetically diverse group (based on 16S rRNA, mcyA, mcyD, and mcyE gene sequences [6, 10, 15, 16, 22]) ranges in morphology from unicellular and colonial cocci to large filamentous strands. Many species can produce a variety of secondary metabolites that can act as hepatatoxins upon ingestion by animals (e.g., variants of microcystin) (4, 33). Microcystin production reduces the water quality in reservoirs used by human populations and fishery resources, and production of these toxins by this group of cyanobacteria makes them important organisms for continued observation and study (4, 33, 36). Much effort has been expended over the past 15 years to characterize the genomic and structural components of the microcystin (mcy) synthetase operon responsible for the production of microcystins. Several complete DNA sequences of the mcy synthetase operon are currently available in GenBank (3, 11, 29, 31).Although the mechanisms of microcystin production are now better understood, recent analyses of mcyA gene fragments from Lakes Erie and Ontario indicated a microcystin toxin producer of unknown phylogeny (7, 28). This discrepancy suggested a need for improved molecular characterization of naturally occurring microcystin producers, which spurred our research to identify the source of several unusual mcyA fragments from the cyanobacterial community (7, 28). It was apparent from initial sequence data that these mcyA gene fragments, termed Microcystis-like, were highly similar to those from Microcystis spp. (colonial or unicellular cocci). However, they contained a 6-nucleotide insert consistent with mcyA genes from filamentous cyanobacteria (e.g., Anabaena, Nostoc, and Planktothrix) (28). These preliminary findings suggested that these unusual mcyA fragments either came from (i) a novel species or strain, (ii) an ancestral Microcystis, (iii) the highly unlikely hybridization of colonial cocci and filamentous cyanobacteria, or (iv) a chimera of cocci and filamentous PCR products. To identify the source of these mcyA gene fragments from uncultured cyanobacteria, we used culture-independent methods to amplify and isolate long regions of the mcy synthetase operon for the simultaneous analysis of two genes, mcyA and mcyB, in one individual from a population. This approach ensures that both genes are contained on the same DNA molecule, thus allowing for more continuous sequence information to use in comparative phylogenetic analyses than previously described. We also envisioned that this mcy gene combination would provide an improved diagnostic tool for determining the genetic potential of naturally occurring cyanobacteria to produce specific microcystin variants by comparing the phylogenetic marker in mcyA to the predictor of amino acid incorporation (via an adenylation domain) in mcyB1.  相似文献   

12.
The aim of this work was to test the efficacy of molecular techniques for detecting toxigenic cyanobacteria in environmental water samples collected from freshwater lakes, rivers and reservoirs in Portugal. Of 26 environmental samples tested, 21 were found to contain Microcystis using a genus-specific polymerase chain reaction (PCR). Another primer pair was applied to the same DNA template to test for the presence of microcystin synthetase genes. This primer pair resulted in the formation of a PCR product in 15 of the samples containing Microcystis and one sample that did not give a positive result in the Microcystis genus-specific PCR. A restriction assay using the enzyme EcoRV was then applied to show that in most cases, the gene fragment was from toxigenic strains of Microcystis and, in one above-mentioned case, from a microcystin-producing strain of Planktothrix. All environmental samples were examined microscopically to confirm the presence of cyanobacteria species. Samples were also tested for the presence of microcystins using the ELISA plate assay. There was good agreement between the results obtained with molecular techniques and those obtained from microscopy and chemical methods. The PCR techniques applied in this paper were found to be useful, particularly when the concentration of the target organism was very low compared with other organisms. This technique can be used to detect inocula for cyanobacterial populations and therefore provide a useful tool for assessing under which conditions particular species can grow into bloom populations.  相似文献   

13.
Members of the cyanobacterial genus Microcystis commonly form blooms in eutrophic freshwater systems, and some produce cyclic heptapeptide hepatotoxins called microcystins, thereby often causing serious water management problems. Microcystis species were unified into the single Microcystis aeruginosa classification based on 16S rRNA gene sequences and DNA–DNA re-association experiments; however, the morphological features of the organisms differ in different culturing conditions. Here, we describe a new real-time quantitative PCR (qPCR) method of determining Microcystis intradiversity using the SYBR Green I assay. We analyzed 71 Microcystis 16S-23S rDNA internal transcribed spacer region (16S-23S ITS) sequences, designed three group-specific PCR primers that successfully selected a morphologically M. wesenbergii-like non-toxic group (Group-3), and differentiated between M. viridis-like toxic group (Group-4) and M. aeruginosa-like Group-1 organisms including toxic and non-toxic Microcystis strains. The primers covered 76% of the Microcystis 16S-23S ITS regions from all over the world (six continents) included in GenBank. We constructed a mixed culture with representative Microcystis strains from each group, and estimated their cell densities by qPCR over 7 weeks. Group-1 and Group-3 grew exponentially for 4 weeks; however, the growth of Group-4 declined after 2 weeks, revealing different growth properties for the Microcystis groups in the mixed culture. Finally, we applied this method to natural Microcystis blooms at four freshwater sites, and found the dominance of Group-1 in three blooms and of Group-3 in one bloom, thereby showing the geographically uneven distribution of Microcystis genotypes. The developed qPCR technique targeting the 16S-23S ITS region is both rapid and simple and is useful for selective quantification of group variations among sympatric Microcystis genotypes, such as in mixed cultures and the natural environment.  相似文献   

14.
Surface samples of the 2007 Microcystis bloom occurring in Copco Reservoir on the Klamath River in Northern California were analyzed genetically by sequencing clone libraries made with amplicons at three loci: the internal transcribed spacer of the rRNA operon (ITS), cpcBA, and mcyA. Samples were taken between June and October, during which time two cell count peaks occurred, in mid-July and early September. The ITS and cpcBA loci could be classified into four or five allele groups, which provided a convenient means for describing the Microcystis population and its changes over time. Each group was numerically dominated by a single, highly represented sequence. Other members of each group varied by changes at 1 to 3 nucleotide positions, while groups were separated by up to 30 nucleotide differences. As deduced by a partial sampling of the clone libraries, there were marked population turnovers during the season, indicated by changes in allele composition at both the ITS and cpcBA loci. Different ITS and cpcBA genotypes appeared to be dominant at the two population peaks. Toxicity (amount of microcystin per cell) and toxigenic potential (mcyB copy number) were lower during the second peak, and the mcyB copy number fell further as the bloom declined.Toxic freshwater cyanobacterial blooms, commonly caused by Microcystis, are of current concern in many parts of the world because of their effects on drinking water, water-based recreation, and watershed ecology (5, 7). Microcystis cells are able to produce microcystin, a nonribosomally synthesized cyclic heptapeptide hepatotoxin with potent inhibitory activity against mammalian protein phosphatases (27) whose synthesis is directed by the 55-kb mcy gene cluster (25). The Microcystis genus exhibits worldwide occurrence, although the extent of genetic differentiation between or within geographical regions is currently uncertain due to a relatively sparse database, in spite of a growing number of studies (1, 2, 9, 11, 26, 28, 29).Only a few studies to date have used gene-specific tools to investigate the changes in the Microcystis population structure throughout the development of a bloom season. In some instances, there has been little indication of major population changes. Thus, the proportion of toxigenic (mcyB+) Microcystis was stable over the course of two consecutive bloom seasons in Lake Wannsee (Berlin, Germany) (17). The internal transcribed spacer of the rRNA operon (ITS) genotype, as assessed by denaturing gradient gel electrophoresis (DGGE) and sequencing, was also stable in Lake Volkerak (Netherlands) during 2001 (15). In contrast, studies of other lakes have observed changes in the Microcystis genotypes and in the proportion of potentially toxigenic cells during a bloom season (3, 15, 21, 31, 32). A better understanding of the population changes that occur during the development of toxic blooms is important in understanding their ecology and in assessing whether it might be feasible to manage Microcystis blooms in order to minimize toxicity.Copco Reservoir is a lake formed by a hydroelectric dam on the Klamath River in northern California. Beginning in 2004, highly toxic blooms dominated by Microcystis have developed between June and November (10, 13). Most studies of Microcystis blooms have been conducted in lakes with low in- and outflows. Copco Reservoir sits on a major river with normal through-flows of 1,000 to 3,000 cubic feet per second (cfs) during bloom season, although much of this flow occurs below the epilimnion, resulting in a surface water residence time of 20 to 25 days during summer (13). The consequences of toxic blooms in the reservoir may be carried to downstream reaches of the river, since elevated Microcystis levels have been present downstream of Copco Reservoir (14). We report here the results of a survey of the genotypic structure of the Microcystis population in Copco Reservoir during the 2007 bloom season. Major population shifts evident at the ITS and cpcBA loci coincided with the replacement of toxigenic with nontoxigenic strains.  相似文献   

15.
The distribution and genotypic variation of potential microcystin (MC) producers along the southern and eastern shores of Lake Ontario in 2001 and 2003 were examined using a suite of PCR primers. Cyanobacterial, Microcystis sp., and Microcystis-specific toxin primer sets identified shoreline distribution of cyanobacterial DNA (in 97% of the stations) and MC synthetase genes (in 50% of the stations). Sequence analysis of a partial mcyA amplicon targeting Microcystis, Anabaena, and Planktothrix species indicated that the Microcystis sp. genotype was the dominant MC genotype present and revealed a novel Microcystis-like sequence containing a 6-bp insert. Analysis of the same samples with genus-specific mcyE primers confirmed that the Microcystis sp. genotype was the dominant potential MC producer. Genotype compositions within embayments were relatively homogenous compared to those for shoreline and tributary samples. MC concentrations along the shoreline exhibited both temporal and spatial differences as evidenced by the protein phosphatase inhibition assay, at times exceeding the World Health Organization guideline value for drinking water of 1.0 μg MC-LReq liter−1. MC genotypes are widespread along the New York State shoreline of Lake Ontario, appear to originate nearshore, and can be carried through the lake via wind and surface water current patterns.  相似文献   

16.
Microcystins are cyanobacterial hepatotoxins, and are produced by nonribosomal enzyme complexes, mcy gene cluster. In this study, we report on whole mcy gene clusters from two Korean strains of M. aeruginosa that were blooming in Lake Paldang (FCY-26) and Geum river (FCY-28). Their specific gene locus, amino acid information, and sub-cluster orientation were also characterized in both strains. Both gene clusters are of 55 kb, and also each length, number and the arrangement are identical. Their sequence analysis revealed a cluster of 10 genes (mcyA, B, C, D, E, F, G, H, I, and J) involved in the biosynthesis of microcystin, and mcyABC and mcyDEFGHIJ formed two polycistronic operon structures that are transcribed bidirectionally from a central promoter region between mcyA and mcyD. The analysis of SNPs provided different nucleotide composition and amino acid variations in two Korean strains of M. aeruginosa. This approach is useful to develop genetic indicators identifying toxic cyanobacteria and their cyanotoxins, and helpful for a better understanding of the diversities of mcy gene clusters, the biosynthesis of microcystin, and the mediation of environmental parameters causing algal blooming and HABs.  相似文献   

17.
Cyanobacterial harmful algal blooms (cyanoHABs) are a primary source of water quality degradation in eutrophic lakes. The occurrence of cyanoHABs is ubiquitous and expected to increase with current climate and land use change scenarios. However, it is currently unknown what environmental parameters are important for indicating the presence of cyanoHAB toxins making them difficult to predict or even monitor on time-scales relevant to protecting public health. Using qPCR, we aimed to quantify genes within the microcystin operon (mcy) to determine which cyanobacterial taxa, and what percentage of the total cyanobacterial community, were responsible for microcystin production in four eutrophic lakes. We targeted Microcystis-16S, mcyA, and Microcystis, Planktothrix, and Anabaena-specific mcyE genes. We also measured microcystins and several biological, chemical, and physical parameters—such as temperature, lake stability, nutrients, pigments and cyanobacterial community composition (CCC)—to search for possible correlations to gene copy abundance and MC production. All four lakes contained Microcystis-mcyE genes and high percentages of toxic Microcystis, suggesting Microcystis was the dominant microcystin producer. However, all genes were highly variable temporally, and in few cases, correlated with increased temperature and nutrients as the summer progressed. Interestingly, toxin gene abundances (and biomass indicators) were anti-correlated with microcystin in all lakes except the largest lake, Lake Mendota. Similarly, gene abundance and microcystins differentially correlated to CCC in all lakes. Thus, we conclude that the presence of microcystin genes are not a useful tool for eliciting an ecological role for toxins in the environment, nor are microcystin genes (e.g. DNA) a good indicator of toxins in the environment.  相似文献   

18.
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.  相似文献   

19.
Here, we report on the characterization of 22 clinical toxigenic V. cholerae non-O1/non-O139 strains isolated in the Middle Asia (Uzbekistan) in 1971–1990. PCR analysis has revealed that these strains contain the main virulence genes such as ctxA, zot, ace (CTXφ); rstC (RS1φ); tcpA, toxT, aldA (pathogenicity island VPI), but they lack both pandemic islands VSP-I and VSP-II specific to epidemic strains of O1 serogroup of El Tor biotype and O139 serogroup. Only two of the twenty two toxigenic strains have tcpA gene of El Tor type, one strain has tcpA gene of classical type, while nineteen other strains carry a new variant of this gene, designated as tcpA uzb. Nucleotide sequences analysis of virulence genes in toxigenic V. cholerae non-O1/non-O139 strains from Uzbekistan showed that they differ significantly from the sequences of these genes in epidemic O1 and O139 strain indicating that they belong to a separate line of evolution of virulent V. cholerae strains. For the first time it is shown that V. cholerae non-O1/non-O139 toxigenic strains of different serogroups may belong to the same clone.  相似文献   

20.
The cyanobacterium Microcystis can produce microcystins, a family of toxins that are of major concern in water management. In several lakes, the average microcystin content per cell gradually declines from high levels at the onset of Microcystis blooms to low levels at the height of the bloom. Such seasonal dynamics might result from a succession of toxic to nontoxic strains. To investigate this hypothesis, we ran competition experiments with two toxic and two nontoxic Microcystis strains using light-limited chemostats. The population dynamics of these closely related strains were monitored by means of characteristic changes in light absorbance spectra and by PCR amplification of the rRNA internal transcribed spacer region in combination with denaturing gradient gel electrophoresis, which allowed identification and semiquantification of the competing strains. In all experiments, the toxic strains lost competition for light from nontoxic strains. As a consequence, the total microcystin concentrations in the competition experiments gradually declined. We did not find evidence for allelopathic interactions, as nontoxic strains became dominant even when toxic strains were given a major initial advantage. These findings show that, in our experiments, nontoxic strains of Microcystis were better competitors for light than toxic strains. The generality of this finding deserves further investigation with other Microcystis strains. The competitive replacement of toxic by nontoxic strains offers a plausible explanation for the gradual decrease in average toxicity per cell during the development of dense Microcystis blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号