首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The INK4a/ARF locus encodes two physically linked tumor suppressor proteins, p16(INK4a) and ARF, which regulate the RB and p53 pathways, respectively. The unusual genomic relationship of the open reading frames of these proteins initially fueled speculation that only one of the two was the true tumor suppressor, and loss of the other merely coincidental in cancer. Recent human and mouse genetic data, however, have firmly established that both proteins possess significant in vivo tumor suppressor activity, although there appear to be species- and cell-type specific differences between the two. For example, ARF plays a clear role in preventing Myc-induced lymphomagenesis in mice, whereas the role for p16(INK4a) is human carcinomas is more firmly established. In this review, I discuss the evolutionary history of the locus, the relative importance of these tumor suppressor genes in human cancer, and recent information suggesting novel biochemical and physiologic functions of these proteins in vivo.  相似文献   

2.
Mouse and human cells have most frequently been used for studies that have led to the elucidation of various molecular pathways involved in senescence. The ARF-p53 pathway has been assigned as one of the major protagonists in these phenomena. ARF is an alternative reading frame protein encoded along with p16INK4A by the INK4a locus on human chromosome 9p21 and the corresponding locus on mouse chromosome 4. Whereas the mouse ARF (p19ARF) consists of 169 amino acids, the human ARF (p14ARF) consists of 132 amino acids, truncated at the C-terminus. Molecular studies on the regulation of ARF activity by its binding partners have revealed that mouse ARF protein, but not human ARF protein, interacts with a cytoplasmic protein, Pex19p. This interaction of mouse ARF with Pex19p results in its milder p53 activation function in mouse cells as compared to human cells and thus accounts, at least in part, for the weaker tumor surveillance and frequent immortalization of mouse cells.  相似文献   

3.
The INK4A locus encodes two independent but overlapping genes, p16INK4A and p19ARF, and is frequently inactivated in human cancers. The unusual structure of this locus has lead to ambiguity regarding the biological role of each gene. Here we express, in primary mouse embryonic fibroblasts (MEFs), antisense RNA constructs directed specifically towards either p16INK4A or p19 ARF. Such constructs induce extended lifespan in primary MEFs; this lifespan extension is reversed upon subsequent elimination of the p16INK4A or p19ARF antisense constructs. In immortal derivatives of cell lines expressing antisense p16INK4A or p19ARF RNA, growth arrest induced by recovery of p16INK4A expression is bypassed by compromising the function of the retinoblastoma protein (Rb), whereas growth arrest induced by re-expression of p19ARF is overcome only by simultaneous inactivation of both the Rb and the p53 pathways. Thus, the physically overlapping p16INK4A and p19ARF genes act in partly overlapping pathways.  相似文献   

4.
Suppression of tumorigenesis is considerably more stringent in the human than in the much shorter lived mouse species, and the reasons for this difference are poorly understood. We investigated functional differences in the control of the ARF (alternative reading frame) protein that acts upstream of p53 and is encoded along with p16(INK4a) at a major tumor suppressor locus in both the human and mouse genomes. The mouse and human ARF proteins are substantially divergent at their carboxyl termini. We have shown that the mouse ARF protein (p19ARF) interacts with Pex19p in the cell cytoplasm leading to its nuclear exclusion and repression of its p53 activation function. The human ARF protein (p14ARF) is substantially smaller than its mouse counterpart and is not subject to this functional inactivation by Pex19p. In an identical cellular background, ribozymes directed against Pex19p enhanced p19ARF- but not p14ARF-activated p53 function. This is the first demonstration of a functional difference between the mouse and human ARF proteins. In view of the major role of ARF in tumor suppression, this distinction may contribute to the different levels of tumor proneness of these species.  相似文献   

5.
The INK4a locus on chromosome 9p21 encodes two structurally distinct tumor suppressor proteins, p16(INK4a) and the alternative reading frame protein, ARF (p19(ARF) in mouse and p14(ARF) in human). Each of these proteins has a role in senescence of primary cells and activates pathways for cell cycle control and tumor suppression. The current prevailing model proposes that p19(ARF) activates p53 function by antagonizing its degradation by MDM2. It was, however, recently shown that stabilization of p53 by p14(ARF) occurs independent of the relocalization of MDM2 to the nucleolus. We have identified a novel collaborator of ARF, CARF. It co-localizes and interacts with ARF in the nucleolus. We demonstrate that CARF is co-regulated with ARF, cooperates with it in activating p53, and thus acts as a novel component of the ARF-p53-p21 pathway.  相似文献   

6.
The INK4b-ARF-INK4a locus encodes for two cyclin-dependent kinase inhibitors, p15INK4b and p16INK4a, and a regulator of the p53 pathway, ARF. In addition ANRIL , a non-coding RNA, is also transcribed from the locus. ARF, p15INK4b and p16INK4a are well-established tumor suppressors which function is frequently disabled in human cancers. Recent studies showed that single nucleotide polymorphisms mapping in the vicinity of ANRIL are linked to a wide spectrum of conditions, including cardiovascular disease, ischemic stroke, type 2 diabetes, frailty and Alzheimer disease. The INK4b-ARF-INK4a locus is regulated by Polycomb repressive complexes (PRCs) and its expression can be invoked by activating signals. Other epigenetic modifiers such as the histone demethylases JMJD3 and JHDM1B, the SWI/SNF chromatin remodeling complex and DNA methyltransferases regulate the locus interplaying with PRCs. In view of the intimate involvement of the INK4b-ARF-INK4a locus on disease, to understand its regulation is the first step for manipulate it to therapeutic benefit.Key words: senescence, p16INK4a, ARF, p15INK4b, ANRIL, polycomb, histone demethylases, DNA methylation  相似文献   

7.
8.
The INK4a/ARF locus encodes two cell cycle regulatory proteins, the cyclin-dependent kinase inhibitor, p16(INK4a), and the p53 activator, p14(ARF). Germline mutations in this locus are associated with melanoma susceptibility in 20-40% of multiple case melanoma families. Many of these mutations specifically impair p16(INK4a), whereas mutations uniquely targeting p14(ARF) are rare. Nevertheless, the importance of p14(ARF) has not been excluded because more than 40% of INK4a/ARF alterations affect p16(INK4a) and p14(ARF). We now report that p14(ARF) is functionally impaired in melanoma kindreds carrying INK4a/ARF mutations. Of the seven INK4a/ARF mutations tested, three altered the subcellular distribution of p14(ARF) and diminished the ability of p14(ARF) to activate the p53 pathway. This work establishes the importance of p14(ARF) in melanoma predisposition.  相似文献   

9.
The frequent loss of both INK4a and ARF in melanoma raises the question of which INK4a-ARF gene product functions to suppress melanoma genesis in vivo. Moreover, the high incidence of INK4a-ARF inactivation in transformed melanocytes, along with the lack of p53 mutation, implies a cell type-specific role for INK4a-ARF that may not be complemented by other lesions of the RB and p53 pathways. A mouse model of cutaneous melanoma has been generated previously through the combined effects of INK4a(Delta2/3) deficiency (null for INK4a and ARF) and melanocyte-specific expression of activated RAS (tyrosinase-driven H-RAS(V12G), Tyr-RAS). In this study, we made use of this Tyr-RAS allele to determine whether activated RAS can cooperate with p53 loss in melanoma genesis, whether such melanomas are biologically comparable to those arising in INK4a(Delta2/3-/-) mice, and whether tumor-associated mutations emerge in the p16(INK4a)-RB pathway in such melanomas. Here, we report that p53 inactivation can cooperate with activated RAS to promote the development of cutaneous melanomas that are clinically indistinguishable from those arisen on the INK4a(Delta2/3) null background. Genomewide analysis of RAS-induced p53 mutant melanomas by comparative genomic hybridization and candidate gene surveys revealed alterations of key components governing RB-regulated G(1)/S transition, including c-Myc, cyclin D1, cdc25a, and p21(CIP1). Consistent with the profile of c-Myc dysregulation, the reintroduction of p16(INK4a) profoundly reduced the growth of Tyr-RAS INK4a(Delta2/3-/-) tumor cells but had no effect on tumor cells derived from Tyr-RAS p53(-/-) melanomas. Together, these data validate a role for p53 inactivation in melanomagenesis and suggest that both the RB and p53 pathways function to suppress melanocyte transformation in vivo in the mouse.  相似文献   

10.
The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/-) and Arf(+/-) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/-) and Arf(+/-) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/-) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/-) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis.  相似文献   

11.
Despite the importance of the INK4a/ARF locus in tumor suppression, its modulation by histone deacetylase inhibitors (HDACis) remains to be characterized. Here, we have shown that the levels of p16INK4a are decreased in human and murine fibroblasts upon exposure to relatively high concentrations of trichostatin A and sodium butyrate. Interestingly, the levels of p19ARF are strongly upregulated in murine cells even at low concentrations of HDACis. Using ARF-deficient cells, we have demonstrated that p19ARF plays an active role in HDACi-triggered cytostasis and the contribution of p19ARF to this arrest is of higher magnitude than that of the well established HDACi target p21Waf1/Cip. Moreover, chemically induced fibrosarcomas in ARF-null mice are more resistant to the therapeutic effect of HDACis than similar tumors in wild type or p21Waf1/Cip-null mice. Together, our results have established the tumor suppressor ARF as a relevant target for HDACi chemotherapy.  相似文献   

12.
13.
14.
《Epigenetics》2013,8(8):685-690
The INK4b-ARF-INK4a locus encodes for two cyclin-dependent kinase inhibitors, p15INK4b and p16INK4a and a regulator of the p53 pathway, ARF. In addition ANRIL, a non-coding RNA, is also transcribed from the locus. ARF, p15INK4b and p16INK4a are well-established tumor suppressors which function is frequently disabled in human cancers. Recent studies showed that single nucleotide polymorphisms mapping in the vicinity of ANRIL are linked to a wide spectrum of conditions, including cardiovascular disease, ischemic stroke, type 2 diabetes, frailty and Alzheimer’s disease. The INK4b-ARF-INK4a locus is regulated by Polycomb repressive complexes (PRCs), and its expression can be invoked by activating signals. Other epigenetic modifiers such as the histone demethylases JMJD3 and JHDM1B, the SWI/SNF chromatin remodeling complex and DNA methyltransferases regulate the locus interplaying with PRCs. In view of the intimate involvement of the INK4b-ARF-INK4a locus on disease, to understand its regulation is the first step for manipulate it to therapeutic benefit.  相似文献   

15.
16.
Somatic cells can be reset to oncogene-induced senescent (OIS) cells or induced pluripotent stem (iPS) cells by expressing specified factors. The INK4/ARF locus encodes p15(INK4b) , ARF, and p16(INK4a) genes in human chromosome 9p21, the products of which are known as common key reprogramming regulators. Compared with growing fibroblasts, the CCCTC-binding factor CTCF is remarkably up-regulated in iPS cells with silencing of the three genes in the locus and is reversely down-regulated in OIS cells with high expression of p15(INK4b) and p16(INK4a) genes. There are at least three CTCF-enriched sites in the INK4/ARF locus, which possess chromatin loop-forming activities. These CTCF-enriched sites and the p16(INK4a) promoter associate to form compact chromatin loops in growing fibroblasts, while CTCF depletion disrupts the loop structure. Interestingly, the loose chromatin structure is found in OIS cells. In addition, the INK4/ARF locus has an intermediate type of chromatin compaction in iPS cells. These results suggest that senescent cells have distinct higher-order chromatin signature in the INK4/ARF locus.  相似文献   

17.
The regulation of INK4/ARF in cancer and aging   总被引:23,自引:0,他引:23  
Kim WY  Sharpless NE 《Cell》2006,127(2):265-275
Loss of the INK4a/ARF/INK4b locus on chromosome 9p21 is among the most frequent cytogenetic events in human cancer. The products of the locus--p15(INK4b), p16(INK4a), and ARF--play widespread and independent roles in tumor suppression. Recent data also suggest that expression of p16(INK4a) induces an age-dependent decrease in the proliferative capacity of certain tissue-specific stem cells and unipotent progenitors. Here, we discuss the regulation and role of p16(INK4a), ARF, and p15(INK4b) in cancer and aging.  相似文献   

18.
19.
20.
The INK4a/ARF locus, which is frequently inactivated in human tumors, encodes two distinct tumor suppressive proteins, ARF and p16INK4a. ARF stabilizes and activates p53 by negating the effects of mdm2 on p53. Furthermore, its function is not restricted to the p53 pathway and it also inhibits cell proliferation in cells lacking p53. Expression of ARF is up-regulated in response to a number of oncogenic stimuli including E2F1. We show here that while oncogenic Ras does not significantly affect p1(4AR)F expression in normal human cells it activates p1(4AR)F in cells containing deregulated E2F. Moreover, oncogenic Ras and E2F1 synergize in activating p1(4AR)F expression. Activation of p1(4AR)F promoter by E2F1 persists in the absence of the consensus E2F-binding sites in this promoter, indicating that this activation also occurs through non- canonical binding sites. The activation by oncogenic Ras requires both E2F and Sp-1 activity, demonstrating the complex regulation of p14(ARF) in response to oncogenic stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号