首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Autogamy is a process of meiosis and fertilization which takes place in unpaired Paramecium cells, and which is triggered by starvation. This study examines the consequences of nutritional down-shift at various points within the cell cycle on the occurrence of autogamy. It shows that cells become committed to autogamy in a two-step process. An initial point of commitment to autogamy occurs about 100 min prior to the median time of cell division (cell cycle duration, 330 min). Cells which have become committed to autogamy initiate meiosis following the next fission, others complete another vegetative cell cycle before undergoing meiosis. Treatments that perturb the cell cycle and displace the point of commitment to division also displace the point of initial commitment to autogamy to the same extent.The initial commitment to autogamy can be reversed by refeeding. The second, final, point of commitment to autogamy occurs about 30 min after the fission, immediately prior to initiation of meiosis, and coincides with the beginning of meiosis. If cells are refed at this point, or at later stages, autogamy continues.Autogamy is not well synchronized either in naturally starved cultures or in those subjected to abrupt nutritional down-shift. This is a consequence of the cell cycle stage dependence of entry into autogamy. Autogamy occurs synchronously in samples of dividers selected from asynchronous cultures 2 or more hours after nutritional down-shift. The timing of the events of conjugation and autogamy coincide when the pre-autogamous fission is aligned temporally with the initial contact of mating cells.  相似文献   

2.
The interval between commitment to division and fission in synchronous cell samples is a constant fraction of the cell cycle (0.2) in cell cycles up to 6.5 h in duration. In longer cell cycles this interval has a fixed duration of about 80 min. The point of commitment to division is associated with the six-rowed anlage stage of oral primordium development (stage V). At this stage cells carrying the cc1 mutation are not blocked by transfer to restrictive conditions but rather proceed to division. Stage V is also the stabilization point for oral anlagen. When shifted to restrictive conditions prior to this stage, development is arrested and resorption of anlagen is initiated. The cc1 mutation also blocks contractile vacuole duplication and migration under restrictive conditions. The cc1 gene function is required continuously prior to the transition point. The timing of morphogenetic stages in asynchronous cells is roughly similar to that in synchronous cells. There are, however, significant differences in timing as estimated by the two experimental procedures.  相似文献   

3.
The interval between commitment to division and fission in synchronous cell samples is a constant fraction of the cell cycle (0.2) in cell cycles up to 6.5 h in duration. In longer cell cycles this interval has a fixed duration of about 80 min. The point of commitment to division is associated with the six-rowed analage stage of oral primordium development (stage V). At this stage cells carrying the cc1 mutation are not blocked by transfer to restrictive conditions but rather proceed to division. Stage V is also the stabilization point for oral anlagen. When shifted to restrictive conditions prior to this stage, development is arrested and resorption of analgen is initiated. The cc1 mutation also blocks contractile vacuole duplication and migration under restrictive conditions. The cc1 gene function is required continuously prior to the transition point. The timing of morphogenetic stages in asynchronous cells is roughly similar to that in synchronous cells. There are, however, significant differences in timing as estimated by the two experimental procedures.  相似文献   

4.
Chlamydomonas reinhardtii cells can double their size several times during the light period before they enter the division phase. To explain the role of the commitment point (defined as the moment in the cell cycle after which cells can complete the cell cycle independently of light) and the moment of initiation of cell division we investigated whether the timing of commitment to cell division and cell division itself are dependent upon cell size or if they are under control of a timer mechanism that measures a period of constant duration. The time point at which cells attain commitment to cell division was dependent on the growth rate and coincided with the moment at which cells have approximately doubled in size. The timing of cell division was temperature-dependent and took place after a period of constant duration from the onset of the light period, irrespective of the light intensity and timing of the commitment point. We concluded that at the commitment point all the prerequisites are checked, which is required for progression through the cell cycle; the commitment point is not the moment at which cell division is initiated but it functions as a checkpoint, which ensures that cells have passed the minimum cell size required for the cell division.  相似文献   

5.
The relationship between protein synthesis and processes of cell division was studied by using synchronized cells of Bacillus subtilis 168. The addition of chloramphenicol at the beginning of synchronous growth prevented septum formation and cell division, suggesting the requirement of protein synthesis for the processes of cell division. Experiments in which the drug was added to the cells at different cell ages showed that the protein synthesis required for the initiation of septum formation was completed at about 15 min and that the protein synthesis required for cell division was completed at about 45 min. By interpreting the result from the concept of the transition point for protein synthesis, it was suggested that the processes of cell division in B. subtilis require at least two kinds of protein molecules which are synthesized at distinct stages in the cell cycle. This was supported by the result of an experiment in which starvation and the readdition of a required amino acid to exponentially growing cells induced two steps of synchronous cell division. Further, the two transition points are in agreement with the estimations obtained by residual division after the inhibition of protein synthesis in asynchronous cells. The relationship of the timing between the completion of chromosome replication and the two transition points was also studied.  相似文献   

6.
In the cell cycle of Paramecium there are three points of interaction between cell growth-related processes and the processes of macronuclear DNA replication and cell division: initiation of DNA synthesis, regulation of the rates of growth and DNA accumulation, and initiation of cell division. This study examines the regulation of the latter two processes by analysis of the response of each to abrupt changes in nutrient level brought about either by transferring dividing cells from a steady-state chemostat culture to medium with unlimited food, or by transferring well-fed dividing cells to exhausted medium. The rates of DNA accumulation and cell growth respond quickly to changes in nutrient level. The amounts of these cell components accumulated during the cell cycle following a shift in nutrient level are typical of those occurring during equilibrium growth under post-shift conditions. Commitment to division occurs at a fixed interval prior to fission that is similar in well-fed and nutrient-limited cells. Initiation of cell division in Paramecium is associated with accumulation of a threshold DNA increment, whose level is largely independent of nutritive conditions. The amount of DNA accumulated during the cell cycle varies with nutritional conditions because the rates of growth and DNA accumulation are affected by nutrient level; slowly growing cells accumulated relatively little DNA during the fixed interval between commitment to cell division and fission.  相似文献   

7.
In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In Paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium. DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions.  相似文献   

8.
This study examines the timing of micronuclear mitosis during the vegetative cell cycle and shows that mitosis begins early in the division process and coincides approximately with the earliest stages of oral morphogenesis (about 0.6 in the cell cycle in synchronous cell samples). The cc1 mutation blocks cell cycle progression prior to the point of commitment to division. Although the cc1 mutation blocks macronuclear DNA synthesis under restrictive conditions, it does not block micronuclear DNA synthesis. However, absence of functional cc1 gene product leads to blockage of micronuclear mitosis prior to completion of anaphase. This point coincides with commitment to division and is also the point at which oral morphogenesis is blocked in cc1 cells. The tim-ings of the transition points for micronuclear mitosis and oral morphogenesis in cc1 cells are closely associated in both synchronous cell samples and in asynchronous cultures. © 1992 Wiley-Liss, Inc.  相似文献   

9.
The controls acting over the timing of DNA replication (S) during the cell cycle have been investigated in the fission yeast Schizosaccharomyces pombe. The cell size at which DNA replication takes place has been determined in a number of experimental situations such as growth of nitrogen-starved cells, spore germination and synchronous culture of wee mutant and wild-type strains. It is shown that in wee mutant strains and in wild type grown under conditions in which the cells are small, DNA replication takes place in cells of the same size. This suggests that there is a minimum cell size beneath which the cell cannot initiate DNA replication and it is this control which determines the timing of S during the cell cycle of the wee mutant. Fast growing wild-type cells are too large for this size control to be expressed. In these cells the timing of S may be controlled by the completion of the previous nuclear division coupled with a requirement for a minimum period in G1. Thus in S. pombe there are two different controls over the timing of S, either of which can be operative depending upon the size of the cell at cell division. It is suggested that these two controls may form a useful conceptual framework for considering the timing control over S in mammalian cells.  相似文献   

10.
Macronuclear DNA synthesis normally continues until late in the cell cycle in Paramecium; however, blockage of macronuclear DNA synthesis after 0.72 in the cell cycle does not alter the occurrence or timing of the subsequent cell division. When DNA synthesis is blocked after cells have reached the transition point, macronuclear DNA content at the following division is reduced to about 75% of the normal level. The point at which macronuclear DNA synthesis is no longer required for division corresponds to the beginning of micronuclear mitosis and the early stages of oral morphogenesis.  相似文献   

11.
A heat-labile protein required for division accumulates during the duplication cycle of Escherichia coli. Its formation appears to commence shortly after the cell divides, and it reaches a maximal amount shortly before the next division. A plausible mechanism for timing cell division depends on building up the critical amount of this protein. Completion of deoxyribonucleic acid (DNA) replication is also necessary for division to occur, but it does not uniquely initiate division. The evidence for these conclusions comes from heat-shock experiments; heating to 45 C for 15 min delays division increasingly with the age of a cell. A heat shock given near the end of a cycle delays division for about 30 min, whereas at the beginning of the cycle it hardly affects division. The net result is synchronization of cell division. The effect of heat is increased in bacteria which have incorporated p-fluoro-phenylalanine into their proteins. When the incorporation is early and the heat shock is late in the cycle, division is delayed by about 30 min, indicating that the division protein is synthesized early even though its sensitivity is not observed until later. At any time in the cell cycle, heat shock simply delays total protein and DNA synthesis ((3)H-thymidine uptake) for approximately 14 min. DNA replication and cell division are thus discoordinated, since DNA replication is not synchronized by the treatment.  相似文献   

12.
Quantitative electron microscope observations were performed on Escherichia coli B/r after balanced growth with doubling times (tau) of 32 and 60 min. The experimental approach allowed the timing of morphological events during the cell cycle by classifying serially sectioned cells according to length. Visible separation of the nucleoplasm was found to coincide with the time of termination of chromosome replication as predicted by the Cooper-Helmstetter model. The duration of the process of constrictive cell division (10 min) appeared to be independent of the growth rate for tau equals 60 min or less but to increase with increase doubling time in more slowly growing cells. Physiological division, i.e., compartmentalization prior to physical separation of the cells, was only observed to occur in the last minute of the cell cycle. The morphological results indicate that cell elongation continues during the division process in cells with tau equals 32 min, but fails to continue in cells with tau equals 60 min.  相似文献   

13.
In this study, we describe the effect of red and blue light on the timing of commitment to cell division in Chlamydomonas reinhardtii. The time point and cell size after which cells can complete their cell cycle with one division round were determined for cultures that were exposed to various red and blue light periods. We show that the commitment point of cells grown in blue light is shifted to a later time point and a larger cell size, when compared with cells grown in red light. This shift was reduced when cultures were exposed to shorter blue light periods. Furthermore, this shift occurred only when exposure to blue light started before the cells attained a particular size. We conclude that the critical cell size for cell division, which is the cell size at which commitment to cell division is attained, is dependent on spectral composition.  相似文献   

14.
Experimental investigations of cell size control in fission yeast Schizosaccharomyces pombe have illustrated that the cell cycle features ‘sizer’ and ‘timer’ phases which are distinguished by a growth rate changing point. Based on current biological knowledge of fission yeast size control, we propose here a model of ordinary differential equations (ODEs) for a possible explanation of the facts and control mechanism which is coupled with the cell cycle. Simulation results of the ODE model are demonstrated to agree with experimental data for the wild type and the cdc2-33 mutant. We show that the coupling of cell growth to cell division by translational control may account for observed properties of size control in fission yeast. As the translational control in the expression of cycle proteins Cdc13 and Cdc25 constructs positive feedback loops, the dynamical activities of the key components undergoes a rapid rising after a preliminary stage of slow increase. The coupling of this dynamical behavior to the elongation of the cell naturally gives rise to a rate change point and to ‘sizer’ and ‘timer’ phases, which characterize the cell cycle of fission yeast.  相似文献   

15.
16.
The viability of synchronous cultures of the fission yeast Schizosaccharomyces pombe 972h has been examined after exposure to temperatures of 49 °C. Synchronous cultures were established by continuous flow size selection. Samples were taken at 20 min intervals over two cell cycles and heat shocked for 15 min. The cells showed different sensitivities to heat treatment during the cell cycle. The sensitive stage lasted from nuclear division to a point in early G2. The position in the cell cycle and duration of the heat sensitive stage of S. pombe are similar to those reported for the response of this organism to ultraviolet light, γ radiation, and to suicide labelling with 32P.  相似文献   

17.
Synchronous cultures of the fission yeast Schizosaccharomyces pombe 972 h−1 are most sensitive to killing by 15 min, 49 °C pulses during a stage stretching from nuclear division through short G1 and S phases to a point early in G2. In this work the cell cycle position of the S phase has been altered by growing the cells in the presence of 2-phenylethanol. The heat sensitivity of these cells was greater at all stages of the cell cycle compared with the cells grown without 2-phenylethanol. However, the position of the most heat sensitive stage in the cell cycle was unaltered. This heat sensitive stage did not include S phase in the cells grown with 2-phenylethanol.  相似文献   

18.
Despite the critical importance of TBX5 in normal development and disease, relatively little is known about the mechanisms by which TBX5 functions in the embryonic heart. Our present studies demonstrate that TBX5 is necessary to control the length of the embryonic cardiac cell cycle, with depletion of TBX5 leading to cardiac cell cycle arrest in late G(1)- or early S-phase. Blocking cell cycle progression by TBX5 depletion leads to a decrease in cardiac cell number, an alteration in the timing of the cardiac differentiation program, defects in cardiac sarcomere formation, and ultimately, to cardiac programmed cell death. In these studies we have also established that terminally differentiated cardiomyocytes retain the capacity to undergo cell division. We further show that TBX5 is sufficient to determine the length of the embryonic cardiac cell cycle and the timing of the cardiac differentiation program. Thus, these studies establish a role for TBX5 in regulating the progression of the cardiac cell cycle.  相似文献   

19.
20.
Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained by chloroplast division, which is performed by the constriction of a ring-like division complex at the division site. It is believed that the synchronization of the endosymbiotic and host cell division events was a critical step in establishing a permanent endosymbiotic relationship, such as is commonly seen in existing algae. In the majority of algal species, chloroplasts divide once per specific period of the host cell division cycle. In order to understand both the regulation of the timing of chloroplast division in algal cells and how the system evolved, we examined the expression of chloroplast division genes and proteins in the cell cycle of algae containing chloroplasts of cyanobacterial primary endosymbiotic origin (glaucophyte, red, green, and streptophyte algae). The results show that the nucleus-encoded chloroplast division genes and proteins of both cyanobacterial and eukaryotic host origin are expressed specifically during the S phase, except for FtsZ in one graucophyte alga. In this glaucophyte alga, FtsZ is persistently expressed throughout the cell cycle, whereas the expression of the nucleus-encoded MinD and MinE as well as FtsZ ring formation are regulated by the phases of the cell cycle. In contrast to the nucleus-encoded division genes, it has been shown that the expression of chloroplast-encoded division genes is not regulated by the host cell cycle. The endosymbiotic gene transfer of minE and minD from the chloroplast to the nuclear genome occurred independently on multiple occasions in distinct lineages, whereas the expression of nucleus-encoded MIND and MINE is regulated by the cell cycle in all lineages examined in this study. These results suggest that the timing of chloroplast division in algal cell cycle is restricted by the cell cycle-regulated expression of some but not all of the chloroplast division genes. In addition, it is suggested that the regulation of each division-related gene was established shortly after the endosymbiotic gene transfer, and this event occurred multiple times independently in distinct genes and in distinct lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号