首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of locomotion by light (masking) was investigated in Syrian hamsters. When 1-h pulses of light were presented in the early night, activity was strongly suppressed by irradiances of about 1 lx or greater. Ultradian light-dark cycles were used as another way to study masking. Hamsters were unable to entrain to 3.5:3.5-h light-dark cycles, thus permitting the masking and the entraining effects of light to be distinguished. Light had greater suppressive effects on activity in home cages than on activity in novel running wheels. Moreover, in home cages activity remained very low for about 30 min after lights were turned off. Post-pulse suppression of activity was not simply a consequence of reduced running, as shown by experiments in which running was temporarily prevented by locking the wheels. A phase response curve for masking was obtained by placing hamsters in novel wheels for 3-h periods at various times throughout their circadian cycles, and then superimposing a 30-min light pulse. The suppressive effect of light was maximal around the onset of activity, which normally coincides with dusk in hamsters. This may have adaptive value in limiting foraging to the hours of darkness. Accepted: 8 February 1999  相似文献   

2.
In a total of 12 adult Colombian owl monkeys, Aotus lemurinus griseimembra, the significance of nonparametric light effects for the entrainment of the circadian system by light-dark (LD) cycles was studied by carrying out (a) phase-response experiments testing the phase-shifting effect of 30-min light pulses (LPs) of 250 lx applied at various phases of the free-running circadian activity rhythm (LL 0.2 lx) and (b) synchronization experiments testing the entraining effect of 24-h single LP photoperiods consisting of 30-min L of 80 lx and 23.5-h D of 0.5 lx (sP 0.5) and skeleton photoperiods consisting of two 30-min LPs of 80 lx, given against a background illuminance of 0.5 lx either symmetrically at 12-h intervals (PP 12:12) or asymmetrically at 9- and 15-h intervals (PP 9:15). The phase-response characteristics in Aotus, as evidenced by the phase-response curve, generally correspond to those of nocturnal rodents, proving that this neotropical simian primate chronobiologically is a genuine nocturnal species. When free-running with a spontaneous period close to 24 h (24.3 ± 0.1 h), the PP 12:12 produced entrainment in only two of five owl monkeys, whereas the sP 0.5 entrained four of them. The PP 9:15, however, brought about stable entrainment of the circadian rhythms of locomotor activity, feeding activity, and core temperature in all animals tested (n = 8). Changes in phase position of the activity time with the endogenous rhythm entrained by a PP 12:12, by an sP 0.5, or by a PP 9:15 give evidence that both LPs of a skeleton photoperiod contribute to the phase setting of the circadian system. When free-running with a considerably lengthened spontaneous period (τ ≥ 25.5 h), even the sP 0.5 and the PP 9:15 failed to entrain the owl monkeys' circadian rhythms, whereas a 24-h photoperiod with a very long LP of 3 h caused entrainment. The results indicate that in Aotus lemurinus griseimembra, in addition to the nonparametric light effects, parametric light effects play a significant role in the entrainment of circadian rhythms by LD cycles.  相似文献   

3.
Wistar rats maintained in cages with running wheels and submitted to a skeleton photoperiod or to a light - dark cycle were tested in the Morris water maze. Half of the animals were exposed to the task during their active phase while the other half was exposed during their inactive phase. The effect of the experience in the water maze, a strong arousing event, on the rhythm of wheel-running activity was evaluated. In the first experiment, a group of animals submitted to a skeleton photoperiod was trained every day in the reference memory version of the task. The novel experience in the water maze had a strong phase-dependent masking effect: it produced an intense post-training bout of activity in the animals tested during their inactive phase. Another experiment was run using single working memory sessions in the water maze and with animals submitted to a light - dark cycle. The circadian rhythm of locomotor activity was evaluated on undisturbed days and compared with testing days. The experience in the water maze produced a significant increase in variability of activity onset during both circadian phases. Taken together, the data suggest that there is a modulating effect of the arousing experience in the pool on the overt circadian rhythm of locomotor activity.  相似文献   

4.
The locomotor activity rhythms of domestic mice, laboratory rats, Syrian hamsters, Siberian hamsters, Mongolian gerbils, degus, and Nile grass rats were compared. Running-wheel activity was monitored under a light–dark cycle with 12 h of light and 12 h of darkness per day. Nile grass rats were found to be reliably diurnal, whereas laboratory rats, Siberian hamsters, domestic mice, and Syrian hamsters were reliably nocturnal. Both diurnal and nocturnal subgroups were observed in Mongolian gerbils and degus. A downward gradient of diurnality was observed from Mongolian gerbils classified as diurnal, degus classified as diurnal, gerbils classified as nocturnal, and degus classified as nocturnal. Nocturnal degus remained nocturnal when tested with an infrared motion detector without running wheels. Thus, although the diurnal–nocturnal dichotomy could be applied to some of the species, it was not appropriate for others. The dichotomy may reflect researchers’ needs for systematization more than a natural distinction between species. Through mechanisms as yet poorly understood, the balance between entraining and masking processes seems to generate a gradient of temporal niches that runs from predominantly diurnal species to predominantly nocturnal species with many chronotypes in between, including species that exhibit wide intra-species gradients of temporal niche.  相似文献   

5.
The temporal relationships of the proestrous LH surge and the circadian locomotor activity rhythm were compared in hamsters entrained to four different 24-hr light-dark (LD) cycles. Animals were housed in cages equipped with running wheels to obtain continuous activity records. Stable entrainment of locomotor activity was complete within 3 weeks of exposure to each photoperiod at which time hamsters were randomly assigned to hourly sample groups. Serum was obtained by cardiac puncture under light ether anesthesia on the day of proestrous and was assayed by RIA for LH. A computer-based least-squares sine wave-fitting technique determined a single objective phase reference point for the time of the hormone maximum. In each photoperiod, precise temporal relationships were maintained between the LH surge and activity onset, whereas the phase relationship between the LH surge and the LD cycle was more variable. These data indicate that the environmental LD cycle entrains the circadian timing system which, in turn, provides temporal information to the rhythms of proestrous gonadotropin and locomotor activity.  相似文献   

6.
Running wheels are widely used in studies on biological rhythms. In mice wheel diameters have ranged from 11 cm to 23 cm. We provided mice with running wheels of two different sizes: 15 cm diameter and 11 cm diameter. The amount of running in the 12-h light:12-h dark condition and the endogenous period of wheel running in constant darkness was determined over 40 days. On the 1st day in constant darkness all animals were exposed to a 15-min light pulse at circadian time 13. The animals in the small wheel ran significantly less both in 12 h light: 12 h dark and constant darkness, and showed a longer endogenous period in constant darkness compared to animals in the large wheel. Moreover, after the light pulse at circadian time 13, mice in the small wheel showed a significantly smaller phase delay in running wheel activity than mice in the larger wheels. The data suggest that the magnitude of a photic phase shift depends on the amount and timing of activity the animals display in relation to this stimulus. It can be concluded that technical features of the running wheel can influence the circadian period of wheel running.  相似文献   

7.
Little information is available on circadian organization in diurnal mammals. In the present study, the daily patterns of wheel-running activity were described in a diurnal rodent, Arvicanthis ansorgei Thomas 1910, as assessed by karyological analysis. Among 108 animals born in the colony and studied under a 12:12 light-dark cycle (lights on at 7:00 a.m.), the authors determined the timing of daily activity (i.e., mean onsets and offsets of pattern of locomotor activity) and the level of wheel-running activity performed during daytime versus nighttime. The activity pattern was essentially diurnal in 84% of individuals, 46% being active only during the light period +/- 1 h (activity onsets and offsets at 6:20 a.m. and 7:40 p.m., respectively) and 38% being diurnal with a period of nocturnal activity longer than 1 h (activity onsets and offsets at 5:40 a.m. and 9:30 p.m., respectively). Of the 108 animals, 16% expressed a nocturnal activity with diurnal overlaps no longer than 1 h. In 6 diurnal individuals first exposed to constant light and then to constant dim red light, the endogenous period was shortened from 24.6 +/- 0.1 to 24.0 +/- 0.1 h, respectively. The numbers of wheel revolutions per day and during the active period remained unchanged between the two lighting conditions. In response to different photoperiodic changes from 16:08 to 08:16 light-dark cycles, the phase angle of photic synchronization, estimated by the daily onset of wheel-running activity in 6 diurnal animals, showed marked changes, its timing occurring 2 h before and 0.5 h after the onset of light under short and long photoperiods, respectively. The numbers of wheel revolutions per 24 h and during the active period were modified similarly according to photoperiodic changes. Finally, in 5 diurnal animals exposed to a 12:12 light-dark cycle, the daily pattern of general locomotor activity, determined by telemetry, was not modified by wheel availability. The data indicate that A. ansorgei is an interesting experimental model to understand the regulation of the circadian timing system in day-active species.  相似文献   

8.
Light influences the daily patterning of behavior by entraining circadian rhythms and through its acute effects on activity levels (masking). Mechanisms of entrainment are quite similar across species, but masking can be very different. Specifically, in diurnal species, light generally increases locomotor activity (positive masking), and in nocturnal ones, it generally suppresses it (negative masking). The intergeniculate leaflet (IGL), a subdivision of the lateral geniculate complex, receives direct retinal input and is reciprocally connected with the primary circadian clock, the suprachiasmatic nucleus (SCN). Here, we evaluated the influence of the IGL on masking and the circadian system in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus), by determining the effects of bilateral IGL lesions on general activity under different lighting conditions. To examine masking responses, light or dark pulses were delivered in the dark or light phase, respectively. Light pulses at Zeitgeber time (ZT) 14 increased activity in control animals but decreased it in animals with IGL lesions. Dark pulses had no effect on controls, but significantly increased activity in lesioned animals at ZT0. Lesions also significantly increased activity, primarily during the dark phase of a 12:12 light/dark cycle, and during the subjective night when animals were kept in constant conditions. Taken together, our results suggest that the IGL plays a vital role in the maintenance of both the species-typical masking responses to light, and the circadian contribution to diurnality in grass rats.  相似文献   

9.
Mice lacking cryptochromes (mCry1-/- mCry2-/-) were kept in a 16h light, 8h dark, light-dark (16:8 LD) cycle and were given additional pulses of light of different brightness, starting 2h after dark onset and lasting for 1h. The suppression of wheel running during these light pulses (i.e., masking) was compared to that of wild types. No evidence of any decrement in the masking response to light was detected. As well as studying masking, minor bouts of activity occurring in the main light portion of a light-dark cycle were quantified. One possible explanation of such predark activity is that some damped endogenous process is spared in mCry1/mCry2 double-knockout mice. (Chronobiology International, 18(4), 613-625, 2001)  相似文献   

10.
Freshly collected samples of Tylos europaeus from Korba beach (northeast of Tunisia) were housed in an environmental cabinet at controlled temperature (18°C?±?.5°C) and photoperiod. Locomotor activity was recorded under two photoperiodic regimens by infrared actography every 20?min by multichannel data loggers. One regimen simulated the natural light-dark cycle on the day of collection, whereas the second imposed a state of continuous darkness on all individuals. Under entraining conditions, the animals displayed rhythmic activity, in phase with the period of darkness, whereas in continuous darkness these isopods exhibited a strong endogenous rhythm with circadian and semidiurnal components at mean periods of τ (h:min)?=?25:09?±?01:02?h and τ?=?12:32?±?00:26?h, respectively. Under free-running conditions, this endogenous rhythm showed significant intraspecific variability.  相似文献   

11.
Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved.  相似文献   

12.
The multiple oscillatory basis of the mammalian circadian pacemaker is adduced by, among other phenomena, the occurrence of split locomotor activity rhythms in rodents after prolonged exposure to constant light. More recently, split rhythms entrained to a 24h light:dark:light:dark cycle have been documented following scheduled access of hamsters to a novel running wheel or by photoperiod manipulations alone. Because the incidence of constant light-induced splitting depends on light intensity, the role of this variable was assessed in this new splitting paradigm. Male Syrian hamsters, entrained to a 14h light:10h dark cycle, were transferred to individual running wheel cages 7h after light onset. Transfer coincided with the beginning of the scotophase of a new photocycle alternating between 5h of relative dark and 7h of light. For four weeks bright photophases (approximately 350 lux) were alternated with either dim (< 0.1 lux) or completely dark (0 lux) scotophases. An additional group received moderate intensity photophases (approximately 45 lux) paired with dim scotophase illumination. For an additional four weeks, all hamsters were exposed to the same bright:dim light:dark cycle. Dim light in the scotophase significantly increased the incidence of split activity rhythms relative to that observed with completely dark scotophases. Overall wheel-running rates and activity induced by a cage change were also increased in dim light-exposed animals. Group differences largely disappeared four weeks later when hamsters previously maintained in completely dark scotophases were exposed to dim scotophases. Photophase light intensity did not affect the overall incidence of splitting, but influenced the timing of activity in the afternoon scotophase. The effects of dim illumination may be mediated in part via enhanced locomotor responses to transfer to a new cage or by changes in coupling interactions between component oscillators.  相似文献   

13.
The role of the intergeniculate leaflet of the thalamus (IGL) in photoperiod responsiveness was examined in a laboratory-selected line of photoperiod nonresponsive (NR) Siberian hamsters. NR hamsters fail to exhibit typical winter-type responses (i.e., gonadal regression and development of winter-type pelage) when exposed to short day lengths (e.g., 10 h of light/day). Earlier studies revealed that NR hamsters will exhibit winter-type responses when exposed to short photoperiod if they are given free access to a running wheel. The present study tested the hypothesis that this locomotor activity-induced reversal of phenotype is dependent on the IGL. Male NR hamsters underwent destruction of the IGL prior to being housed in short day lengths in cages equipped with running wheels. Activity rhythms were monitored for 8 weeks, after which time pelage response and paired testes weights were obtained. In contrast to sham-operated NR animals given access to running wheels, IGL-ablated animals showed no increase in the duration of nocturnal running wheel activity and became active later in the night than sham-lesioned animals. Lesioned animals also failed to exhibit the typical short photoperiod-induced gonadal regression and pelage molt. The results implicate the IGL in the mechanism by which running wheel activity can influence photoperiodic responses.  相似文献   

14.
The multiple oscillatory basis of the mammalian circadian pacemaker is adduced by, among other phenomena, the occurrence of split locomotor activity rhythms in rodents after prolonged exposure to constant light. More recently, split rhythms entrained to a 24h light:dark:light:dark cycle have been documented following scheduled access of hamsters to a novel running wheel or by photoperiod manipulations alone. Because the incidence of constant light-induced splitting depends on light intensity, the role of this variable was assessed in this new splitting paradigm. Male Syrian hamsters, entrained to a 14h light:10h dark cycle, were transferred to individual running wheel cages 7h after light onset. Transfer coincided with the beginning of the scotophase of a new photocycle alternating between 5h of relative dark and 7h of light. For four weeks bright photophases (~350 lux) were alternated with either dim (<0.1 lux) or completely dark (0 lux) scotophases. An additional group received moderate intensity photophases (~45 lux) paired with dim scotophase illumination. For an additional four weeks, all hamsters were exposed to the same bright:dim light:dark cycle. Dim light in the scotophase significantly increased the incidence of split activity rhythms relative to that observed with completely dark scotophases. Overall wheel-running rates and activity induced by a cage change were also increased in dim light-exposed animals. Group differences largely disappeared four weeks later when hamsters previously maintained in completely dark scotophases were exposed to dim scotophases. Photophase light intensity did not affect the overall incidence of splitting, but influenced the timing of activity in the afternoon scotophase. The effects of dim illumination may be mediated in part via enhanced locomotor responses to transfer to a new cage or by changes in coupling interactions between component oscillators.  相似文献   

15.
The cumacean Dimorphostylis asiatica (Crustacea) exhibits a circatidal swimming activity rhythm. The animals were exposed to a 12.5 hr sinusoidal change of hydrostatic pressure of 0.3 atm amplitude in the laboratory. Under constant dark conditions, most of the specimens were entrained to a daily bimodal swimming activity rhythm by the hydrostatic pressure cycle. A small number of individuals exhibited a unimodal daily rhythm, with no apparent entraining from the administered cycles. A marked feature was a flexible phase relationship between the entrained daily bimodal rhythm and the hydrostatic pressure cycles: the swimming activity of most of the specimens occurred around the pressure-decreasing phase, but for a small number of individuals it coincided with the pressure-increasing phase. Such flexibility suggests a weak entraining effect of hydrostatic pressure on the circatidal rhythm of this species. When exposed to 24 hr light-dark cycles and a hydrostatic pressure cycle simultaneously, the specimens exhibited a rhythmic activity entrained by the hydrostatic pressure cycle during the dark period, which closely resembles the temporal activity pattern of this species in the field. The light cycles entrained the swimming activity via direct inhibition and induction of activity (i.e., masking). Under light-dark conditions, the specimens exhibited activity on the pressure-increasing phase more frequently compared with specimens kept in constant darkness.  相似文献   

16.
Circadian rhythms can be reset by both photic and non-photic stimuli. Recent studies have used long light exposure to produce photic phase shifts or to enhance non-photic phase shifts. The presence or absence of light can also influence the expression of locomotor rhythms through masking; light during the night attenuates locomotor activity, while darkness during the day induces locomotor activity in nocturnal animals. Given this dual role of light, the current study was designed to examine the relative contributions of photic and non-photic components present in a long light pulse paradigm. Mice entrained to a light/dark cycle were exposed to light pulses of various durations (0, 3, 6, 9, or 12 h) starting at the time of lights-off. After the light exposure, animals were placed in DD and were either left undisturbed in their home cages or had their wheels locked for the remainder of the subjective night and subsequent subjective day. Light treatments of 6, 9, and 12 h produced large phase delays. These treatments were associated with decreased activity during the nocturnal light and increased activity during the initial hours of darkness following light exposure. When the wheels were locked to prevent high-amplitude activity, the resulting phase delays to the light were significantly attenuated, suggesting that the activity following the light exposure may have contributed to the overall phase shift. In a second experiment, telemetry probes were used to assess what effect permanently locking the wheels had on the phase shift to the long light pulses. These animals had phase shifts fully as large as animals without any form of wheel lock, suggesting that while non-photic events can modulate photic phase shifts, they do not play a role in the full phase-shift response observed in animals exposed to long light pulses. This paradigm will facilitate investigations into non-photic responses of the mouse circadian system.  相似文献   

17.
Inhibition of wheel running by light (masking) was investigated in Syrian hamsters with suprachiasmatic nucleus or sham lesions. Approximately 90% of the wheel revolutions made by hamsters with complete suprachiasmatic nucleus lesions, as judged by histology and power spectrum analysis of their wheel running, occurred during the dark phases of an ultradian light-dark cycle (3.5 h light, 3.5 h dark). This was demonstrated for two illumination levels (380 lx and 6 lx). Similar results were obtained with sham-operated animals. In further tests, the hamsters with lesions also retained a strong preference for the dark side of a box divided into dark and light sides. These results demonstrate that the suprachiasmatic nucleus is not necessary for masking by light or the preference for a dark over a light compartment. Evidently the direct effects of light can substitute for the endogenous control by the suprachiasmatic nucleus to maintain appropriate behaviour in time and space. Accepted: 30 January 1999  相似文献   

18.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel ( Funambulus pennanti ). Palm squirrels showed strongly diurnal locomotor activity rhythms (~ 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

19.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel (Funambulus pennanti). Palm squirrels showed strongly diurnal locomotor activity rhythms (? 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

20.
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号