首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bovine carotid artery endothelial (BAE) cells are resistant to tumor necrosis factor-alpha (TNF), like most other cells. We examined if mitogen-activated protein (MAP) kinase and phosphatidylinositol-3 (PI3) kinase/Akt pathways are involved in this effect. In BAE cells, TNF activates MAP kinase in a MAP kinase kinase 1 (MEK1) manner and Akt in PI3-kinase-dependent manner. Pretreatment with either the MEK1 inhibitor U0126 or PI3-kinase inhibitor LY294002 sensitized BAE cells to TNF-induced apoptosis. Neither U0126 nor LY294002 pretreatment affected TNF-induced activation of NF-kappaB, suggesting that the MAP kinase or PI3-kinase/Akt-mediated anti-apoptotic effect induced by TNF was not relevant to NF-kappaB activation. Both MAP kinase and PI3-kinase/Akt -mediated signaling could prevent cytochrome c release and mitochondrial transmembrane potential (Deltapsi) decrease. PI3-kinase/Akt signaling attenuated caspase-8 activity, whereas MAP kinase signaling impaired caspase-9 activity. These results suggest that TNF-induced MAP kinase and PI3-kinase/Akt signaling play important roles in protecting BAE cells from TNF cytotoxicity.  相似文献   

3.
Treatment of human U-937 myeloid leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with activation of the stress-activated protein kinase (SAPK) and induction of terminal monocytic differentiation. The present studies demonstrate that TPA targets SAPK to mitochondria by a mechanism dependent on activation of protein kinase C (PKC) beta. Translocation of SAPK to mitochondria in response to TPA is associated with release of cytochrome c, caspase-3 activation and induction of apoptosis. The results show that TPA induces the association of SAPK with the mitochondrial anti-apoptotic Bcl-x(L) protein. Overexpression of Bcl-x(L) attenuated the apoptotic response to TPA treatment. Moreover, expression of Bcl-x(L) mutated at sites of SAPK phosphorylation (Thr-47, -115) was more effective than wild-type Bcl-x(L) in abrogating TPA-induced cytochrome c release and apoptosis. By contrast, expression of Bcl-x(L) had little effect on induction of the monocytic phenotype. These findings indicate that myeloid leukemia cells respond to TPA with targeting of SAPK to mitochondria and that this response contributes to terminal differentiation through the release of cytochrome c and induction of apoptosis.  相似文献   

4.
Our study reports that staurosporine induces apoptosis in cultured rat hepatocytes in a dose- and time-dependent fashion. Staurosporine induced apparent cleavage of caspase-8, caspase-9, and caspase-3. The release of cytochrome c from mitochondria, and Bid activation were also detected in staurosporine-treated primary hepatocytes. These results suggest that mitochondria-mediated cell death signaling may be involved in staurosporine-induced hepatocyte apoptosis. Bcl-x(L) overexpression protected from "loss of" mitochondrial transmembrane potential and prevented staurosporine-induced caspase-3 and caspase-8 cleavage. Overexpression of constitutively active ERK and PKB inhibited staurosporine-induced caspase-3 activation and hepatocyte death. PI3K inhibitor (LY294002) and ERK inhibitor (PD98059) significantly reversed the protective effects of Bcl-x(L) on staurosporine-induced hepatocyte death. Our data suggest that Bcl-x(L) prevents staurosporine-induced hepatocyte apoptosis by modulating protein kinase B and p44/42 mitogen-activated protein kinase activity and disrupts mitochondria death signaling.  相似文献   

5.
Bak but not Bax is essential for Bcl-xS-induced apoptosis   总被引:2,自引:0,他引:2  
Bcl-x(S), a proapoptotic member of the Bcl-2 protein family, is localized in the mitochondria and induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. The way in which Bcl-x(S) induces caspase activation and cytochrome c release, as well as the relationship between Bcl-x(S) and other proapoptotic members of the Bcl-2 family, is not known. Here we used embryonic fibroblasts derived from mice deficient in the multidomain proapoptotic members of the Bcl-2 family (Bax and Bak) and the apoptotic components of the apoptosome (Apaf-1 and caspase-9) to unravel the cascade of events by which Bcl-x(S) promotes apoptosis. Our results show that Bak but not Bax is essential for Bcl-x(S)-induced apoptosis. Bcl-x(S) induced activation of Bak, which in turn promoted apoptosis by apoptosome-dependent and -independent pathways. These findings provide the first evidence that a proapoptotic Bcl-2 family protein induces apoptosis exclusively via Bak.  相似文献   

6.
We have already demonstrated that interferon alfa-2b (IFN-alpha2b) induces apoptosis in isolated hepatocytes from preneoplastic rat livers via the secretion of transforming growth factor beta(1) (TGF-beta(1)), and this process is accompanied by caspase-3 activation. The aim of this study was to further investigate the mechanism of this activation. Isolated hepatocytes from preneoplastic livers induced DNA fragmentation in response to IFN-alpha2b, which was completely blocked when anti-TGF-beta(1) was added to the culture media. IFN-alpha2b mediated radical oxygen species (ROS) production that preceded the loss of mitochondrial transmembrane potential (DeltaPsi), release of cytochrome c, and activation of caspase-3. Bax levels increased in a time-dependent fashion, and Bcl-x(L) was down-regulated in the early hours of IFN-alpha2b treatment. The delayed translocation of Bid into the mitochondria was in concordance with late caspase-8 activation. In conclusion, endogenous TGF-beta(1) secreted under IFN-alpha2b stimulus seems to induce cytochrome c release through a mechanism related to Bcl-2 family members and loss of mitochondrial DeltaPsi. Bax protein could be responsible of the release of cytochrome c during the initial hours of IFN-alpha2b-induced apoptosis via TGF-beta(1). Activated Bid by caspases could amplificate the mitochondrial events, enhancing the release of cytochrome c.  相似文献   

7.
The phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway is an important mediator of growth factor-dependent survival of mammalian cells. A variety of targets of the Akt protein kinase have been implicated in cell survival, including the protein kinase glycogen synthase kinase 3beta (GSK-3beta). One of the targets of GSK-3beta is translation initiation factor 2B (eIF2B), linking global regulation of protein synthesis to PI 3-kinase/Akt signaling. Because of the central role of protein synthesis, we have investigated the involvement of eIF2B, which is inhibited as a result of GSK-3beta phosphorylation, in programmed cell death. We demonstrate that expression of eIF2B mutants lacking the GSK-3beta phosphorylation or priming sites is sufficient to protect both Rat-1 and PC12 cells from apoptosis induced by overexpression of GSK-3beta, inhibition of PI 3-kinase, or growth factor deprivation. Consistent with these effects on cell survival, expression of nonphosphorylatable eIF2B prevented inhibition of protein synthesis following treatment of cells with the PI 3-kinase inhibitor LY294002. Conversely, cycloheximide induced apoptosis of PC12 and Rat-1 cells, further indicating that protein synthesis was required for cell survival. Inhibition of translation resulting from treatment with cycloheximide led to the release of cytochrome c from mitochondria, similar to the effects of inhibition of PI 3-kinase. Expression of nonphosphorylatable eIF2B prevented cytochrome c release resulting from PI 3-kinase inhibition but did not affect cytochrome c release or apoptosis induced by cycloheximide. Regulation of translation resulting from phosphorylation of eIF2B by GSK-3beta thus appears to contribute to the control of cell survival by the PI 3-kinase/Akt signaling pathway, acting upstream of mitochondrial cytochrome c release.  相似文献   

8.
Tissue inhibitors of metalloproteinases (TIMPs) are important regulators of matrix metalloproteinase (MMP) and adamalysin metalloproteinase activity. We previously reported that overexpression of TIMP-3 inhibits MMPs and induces apoptotic cell death in a variety of cell types and demonstrated that apoptosis is mediated through the N terminus of TIMP-3, which harbors the MMP inhibitory domain. However, little is known about the mechanisms underlying TIMP-3-induced apoptosis. Here we demonstrate that overexpression of TIMP-3 induced activation of initiator caspase-8 and -9 and promoted caspase-mediated cleavage of the death substrates poly(ADP-ribose) polymerase and focal adhesion kinase. Furthermore, TIMP-3 induced mitochondrial activation as demonstrated by loss of mitochondrial membrane potential and release of cytochrome c. Intervention studies demonstrated that overexpression of Bcl-2, the anti-apoptotic mitochondrial membrane protein, or CrmA, a viral serpin inhibitor of caspase-8, completely inhibited TIMP-3-induced apoptosis. Furthermore, a dominant-negative Fas-associated death domain mutant inhibited TIMP-3-induced death substrate cleavage and apoptotic death. Taken together, these results indicate that TIMP-3 overexpression induces a type II apoptotic pathway initiated via a Fas-associated death domain-dependent mechanism.  相似文献   

9.
Interleukin-11 (IL-11) displays epithelial cytoprotective effects during intestinal injury. Antiapoptotic effects of IL-11 have been described, yet mechanisms remain unclear. Fas/CD95 death receptor signaling is upregulated in ulcerative colitis, leading to mucosal breakdown. We hypothesized that IL-11 inhibits Fas ligand (FasL)-mediated apoptosis in intestinal epithelia. Cell death was monitored in IEC-18 cells by microscopy, caspase and poly(ADP-ribose) polymerase cleavage, mitochondrial release of cytochrome c, and abundance of cytoplasmic oligonucleosomal DNA. RT-PCR was used to monitor Fas, cIAP1, cIAP2, XIAP, cFLIP, survivin, and Bcl-2 family members. Fas membrane expression was detected by immunoblot. Inhibitors of JAK2, phosphatidylinositol 3-kinase (PI3-kinase), Akt 1, MEK1 and MEK2, and p38 MAPK were used to delineate IL-11's antiapoptotic mechanisms. IL-11 did not alter Fas expression. Pretreatment with IL-11 for 24 h before FasL reduced cytoplasmic oligonucleosomal DNA by 63.2%. IL-11 also attenuated caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage without affecting expression of activated caspase-8 p20 or cytochrome c release. IL-11 did not affect mRNA expression of the candidate antiapoptotic genes. The MEK1 and MEK2 inhibitors U-0126 and PD-98059 significantly attenuated the protection of IL-11 against caspase-3 and caspase-9 cleavage and cytoplasmic oligonucleosomal DNA accumulation. Although Akt inhibition reversed IL-11-mediated effects on caspase cleavage, it did not reverse the protective effects of IL-11 by DNA ELISA. We conclude that IL-11-dependent MEK1 and MEK2 signaling inhibits FasL-induced apoptosis. The lack of reversal of the IL-11 effect on DNA cleavage by Akt inhibition, despite antagonism of caspase cleavage, suggests that IL-11 inhibits caspase-independent cell death signaling by FasL in a MEK-dependent manner.  相似文献   

10.
Caspases are a family of cysteine proteases that constitute the apoptotic cell death machinery. We report the importance of the cytochrome c-mediated caspase-9 death pathway for radiosensitization by the protein kinase C (PKC) inhibitors staurosporine (STP) and PKC-412. In our genetically defined tumor cells, treatment with low doses of STP or the conventional PKC-specific inhibitor PKC-412 in combination with irradiation (5 Gy) potently reduced viability, enhanced mitochondrial cytochrome c release into the cytosol, and specifically stimulated the initiator caspase-9. Whereas treatment with each agent alone had a minimal effect, combined treatment resulted in enhanced caspase-3 activation. This was prevented by broad-range and specific caspase-9 inhibitors and absent in caspase-9-deficient cells. The tumor suppressor p53 was required for apoptosis induction by combined treatment but was dispensable for dose-dependent STP-induced caspase activation. These results demonstrate the requirement for an intact caspase-9 pathway for apoptosis-based radiosensitization by PKC inhibitors and show that STP induces apoptosis independent of p53.  相似文献   

11.
In the present study, we investigated the effects of tetramethylpyrazine (TMP) on hydrogen peroxide (H2O2)-induced apoptosis in PC12 cells. The apoptosis in H2O2-induced PC12 cells was accompanied by a decrease in Bcl-2/Bax protein ratio, release of cytochrome c to cytosol and the activation of caspase-3. TMP not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation and eventually protected against H2O2-induced apoptosis. These results indicated that TMP blocked H2O2-induced apoptosis by the regulation of Bcl-2 family members, suppression of cytochrome c release, and caspase cascade activation in PC12 cells.  相似文献   

12.
The MUC1 transmembrane glycoprotein is overexpressed by most human carcinomas. Overexpression of MUC1 confers transformation; however, the signaling pathways activated by this oncoprotein are largely unknown. The present studies demonstrated that MUC1-induced transformation of 3Y1 fibroblasts is associated with increased levels of phospho-Akt and phospho-Bad. The finding that LY294002 blocks MUC1-mediated increases in phospho-Akt and phospho-Bad supports the involvement of phosphoinositide 3-kinase (PI3K) as an upstream effector of this response. We also show that MUC1 increases the expression of the anti-apoptotic Bcl-x(L) protein (but not Bcl-2) by a PI3K-independent mechanism. In concert with these results, MUC1 attenuated (i) the loss of mitochondrial transmembrane potential, (ii) mitochondrial cytochrome c release, (iii) activation of caspase-9, and (iv) induction of apoptosis by the antimetabolite, 1-beta-d-arabinofuranosylcytosine. Similar results were obtained with the anti-cancer agent, gemcitabine. These findings indicate that expression of MUC1 in 3Y1 cells activates the anti-apoptotic PI3K/Akt and Bcl-x(L) pathways.  相似文献   

13.
Growth factor-dependent kinases, such as phosphatidylinositol 3-kinase (PI 3-kinase) and Raf kinases, have been implicated in the suppression of apoptosis. We have recently established Rat-1 fibroblast cell lines overexpressing B-Raf, leading to activation of the MEK/Erk mitogen-activated protein kinase pathway. Overexpression of B-Raf confers resistance to apoptosis induced by growth factor withdrawal or PI 3-kinase inhibition. This is accompanied by constitutive activation of Erk without effects on the PI 3-kinase/Akt pathway. The activity of MEK is essential for cell survival mediated by B-Raf overexpression, since either treatment with the specific MEK inhibitor PD98059 or expression of a dominant inhibitory MEK mutant blocks the antiapoptotic activity of B-Raf. Activation of MEK is not only necessary but also sufficient for cell survival because overexpression of constitutively activated MEK, Ras, or Raf-1, like B-Raf, prevents apoptosis after growth factor deprivation. Overexpression of B-Raf did not interfere with the release of cytochrome c from mitochondria after growth factor deprivation. However, the addition of cytochrome c to cytosols of cells overexpressing B-Raf failed to induce caspase activation. It thus appears that the B-Raf/MEK/Erk pathway confers protection against apoptosis at the level of cytosolic caspase activation, downstream of the release of cytochrome c from mitochondria.  相似文献   

14.
Growth factors signaling through the phosphoinositide 3-kinase/Akt pathway promote cell survival. The mechanism by which the serine/threonine kinase Akt prevents cell death remains unclear. We have previously shown that Akt inhibits the activity of DEVD-targeted caspases without changing the steady-state levels of Bcl-2 and Bcl-x(L). Here we show that Akt inhibits apoptosis and the processing of procaspases to their active forms by delaying mitochondrial changes in a caspase-independent manner. Akt activation is sufficient to inhibit the release of cytochrome c from mitochondria and the alterations in the inner mitochondrial membrane potential. However, Akt cannot inhibit apoptosis induced by microinjection of cytochrome c. We also demonstrated that Akt inhibits apoptosis and cytochrome c release induced by several proapoptotic Bcl-2 family members. Taken together, our results show that Akt promotes cell survival by intervening in the apoptosis cascade before cytochrome c release and caspase activation via a mechanism that is distinct from Bad phosphorylation.  相似文献   

15.
Both rotenone and manganese are possible neurotoxins for a wide variety of cell and neuronal types including dopaminergic neurons and induce apoptosis in various cells. Neurotrophic factors have the potential for therapeutic development when used to prevent Parkinson's disease. In this paper, we focused on the differences between rotenone and manganese as toxins, and characterized the influence of neurotrophic factors on toxin-induced apoptosis in PC12 cells. There were distinct differences in intracellular mechanisms between rotenone- and manganese-induced apoptosis such as the production of reactive oxygen species, the response to antioxidants, and the activation of the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Nerve growth factor (NGF) almost completely prevented rotenone-induced but not manganese-induced caspase activation and DNA fragmentation. The differential effect of NGF was found to be mainly due to the down-regulation of the Trk tyrosine kinase receptor by manganese but not by rotenone. Prevention of rotenone-induced apoptosis by NGF was attenuated by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, but not MAPK kinase (MEK) inhibitors, PD98059 or U0126. These results demonstrate that the potential neurotoxins for dopaminergic cells exert their toxic effect by activation of different signaling pathways of apoptosis and that NGF prevents rotenone-induced apoptosis through the activation of the PI 3-kinase pathway not MAPK pathway.  相似文献   

16.
Mast cells play a critical role in the host defense against bacterial infection. Recently, apoptosis has been demonstrated to be essential in the regulation of host response to Pseudomonas aeruginosa. In this study we show that human mast cell line HMC-1 and human cord blood-derived mast cells undergo apoptosis as determined by the ssDNA formation after infection with P. aeruginosa. P. aeruginosa induced activation of caspase-3 in mast cells as evidenced by the cleavage of D4-GDI, an endogenous caspase-3 substrate and the generation of an active form of caspase-3. Interestingly, P. aeruginosa treatment induced up-regulation of Bcl-x(S) and down-regulation of Bcl-x(L). Bcl-x(S), and Bcl-x(L) are alternative variants produced from the same Bcl-x pre-mRNA. The former is proapoptotic and the latter is antiapoptotic likely through regulating mitochondrial membrane integrity. Treatment of mast cells with P. aeruginosa induced release of cytochrome c from mitochondria and loss of mitochondrial membrane potentials. Moreover, P. aeruginosa treatment reduced levels of Fas-associated death domain protein-like IL-1beta-converting enzyme-inhibitory proteins (FLIPs) that are endogenous apoptosis inhibitors through counteraction with caspase-8. Thus, human mast cells undergo apoptosis after encountering P. aeruginosa through a mechanism that likely involves both the Bcl family protein mitochondrial-dependent and the FLIP-associated caspase-8 pathways.  相似文献   

17.
The Gab1-docking protein has been shown to regulate phosphatidylinositol 3-kinase PI3K activity and potentiate nerve growth factor (NGF)-induced survival in PC12 cells. Here, we investigated the potential of Gab1 to induce neurite outgrowth and DNA synthesis, two other important aspects of NGF-induced neuronal differentiation of PC12 cells and NGF-independent survival. We generated a recombinant adenovirus encoding hemagglutinin (HA)-epitope-tagged Gab1 and expressed this protein in PC12 cells. HA-Gab1 was constitutively tyrosine-phosphorylated in PC12 cells and induced the phosphorylation of Akt/protein kinase B and p44/42 mitogen-activated protein kinase. HA-Gab1-stimulated a 10-fold increase in neurite outgrowth in the absence of NGF and a 5-fold increase in NGF-induced neurite outgrowth. HA-Gab1 also stimulated DNA synthesis and caused NGF-independent survival in PC12 cells. Finally, we found that HA-Gab1-induced neuritogenesis was completely suppressed by pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activity and 50% suppressed by inhibition of PI3K activity. In contrast, HA-Gab1-stimulated cell survival was efficiently suppressed only by inhibition of both PI3K and MEK activities. These results indicate that Gab1 is capable of mediating differentiation, DNA synthesis, and cell survival and uses both PI3K and MEK signaling pathways to achieve its effects.  相似文献   

18.
The p14(ARF) tumor suppressor plays a central role in regulating cell cycle arrest and apoptosis. We reported previously that p14(ARF) is capable of triggering apoptosis in a p53-independent manner. However, the mechanism remained unclear. Here we demonstrate that the p53-independent activation of the mitochondrial apoptosis pathway by p14(ARF) is primarily mediated by the pro-apoptotic Bax-homolog Bak. Expression of p14(ARF) exclusively triggers a N-terminal conformational switch of Bak, but not Bax, which allows for mitochondrial permeability shift, release of cytochrome c, activation of caspases, and subsequent fragmentation of genomic DNA. Although forced expression of Bak markedly sensitizes toward p14(ARF)-induced apoptosis, re-expression of Bax has no effect. Vice versa, knockdown of Bak by RNA interference attenuates p14(ARF)-induced apoptosis, whereas down-regulation of Bax has no effect. Bak activation coincides with a prominent, caspase-independent deprivation of the endogenous Bak inhibitors Mcl-1 and Bcl-x(L). In turn, mitochondrial apoptosis is fully blocked by overexpression of either Mcl-1 or Bcl-x(L). Taken together, these data indicate that in the absence of functional p53 and Bax, p14(ARF) triggers mitochondrial apoptosis signaling by activating Bak, which is facilitated by down-regulating anti-apoptotic Mcl-1 and Bcl-x(L). Moreover, our data suggest that the simultaneous inhibition of two central endogenous Bak inhibitors, i.e. Mcl-1 and Bcl-x(L), may be sufficient to activate mitochondrial apoptosis in the absence of BH3-only protein regulation.  相似文献   

19.
In earlier studies, we and others have established that activation of EGFR can promote survival in association with upregulation of Bcl-x(L). However, the mechanism responsible for upregulation of Bcl-x(L) is unknown. For the current studies we have chosen pro-apoptotic, c-Myc-overexpressing murine mammary epithelial cells (MMECs) derived from MMTV-c-Myc transgenic mouse tumors. We now demonstrate that EGFR activation promotes survival through Akt and Erk1/2. Blockade of EGFR kinase activity and the PI3-K/Akt and MEK/Erk pathways with pharmacological inhibitors resulted in a significant induction of cellular apoptosis, paralleled by a downregulation of both Akt and Erk1/2 proteins. Consistent with a survival-promoting role of Akt, we observed that constitutively activated Akt (Myr-Akt) inhibited apoptosis of pro-apoptotic, c-Myc-overexpressing cells following the inhibition of EGFR tyrosine kinase activity. In addressing possible downstream effectors of EGFR through activated Akt, we detected significant upregulation of Bcl-x(L) protein, suggesting this pro-survival protein is a target of Akt in MMECs. By using pharmacological inhibitors of PI3-K/Akt and MEK/Erk together with dominant-negative Akt and Erk1 we observed the decrease in Bcl-x(L) protein. Our findings may be of importance for understanding the emerging role of Bcl-x(L) as a potential marker of poor prognosis in breast cancer.  相似文献   

20.
Nerve growth factor (NGF) is well characterised as an important pro-survival factor in neuronal cells that can inhibit apoptotic cell death upstream of mitochondrial outer membrane permeabilisation. Here we addressed the question of whether NGF can also protect against apoptosis downstream of caspase activation. NGF treatment promoted a rapid reduction in the level of the p17 subunit of active caspase-3 in PC12 cells that had been induced to undergo apoptosis by various cytotoxins. The mechanism involved TrkA-dependent activation of extracellular signal-regulated kinase (ERK1/2) but not phosphatidylinositol 3-kinase (PI3K)/Akt, and de novo protein synthesis. Involvement of inhibitor of apoptosis proteins (IAPs) and proteasomal degradation were ruled out. In contrast, inhibition of lysosome function using chloroquine and concanamycin A reversed NGF-induced removal of p17. Moreover, in NGF-treated cells, active caspases were found to be localised to lysosomes. The involvement of macroautophagy and chaperone-mediated autophagy were ruled out. Taken together, these findings suggest an anti-apoptotic mechanism by which NGF induces removal of active caspase-3 in a lysosome-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号