首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian DNA methyltransferases: a structural perspective   总被引:3,自引:0,他引:3  
The methylation of mammalian DNA, primarily at CpG dinucleotides, has long been recognized to play a major role in controlling gene expression, among other functions. Given their importance, it is surprising how many basic questions remain to be answered about the proteins responsible for this methylation and for coordination with the parallel chromatin-marking system that operates at the level of histone modification. This article reviews recent studies on, and discusses the resulting biochemical and structural insights into, the DNA nucleotide methyltransferase (Dnmt) proteins 1, 3a, 3a2, 3b, and 3L.  相似文献   

2.
In mammalian cells, DNA methylation patterns are precisely maintained after DNA replication with defined changes occurring during development. The major DNA methyltransferase (Dnmt1) is associated with nuclear replication sites during S-phase, which is consistent with a role in maintenance methylation. The subcellular distribution of the recently discovered de novo DNA methyltransferases, Dnmt3a and Dnmt3b, was investigated by immunofluorescence and by epitope tagging. We now show that both Dnmt3a and Dnmt3b are distributed throughout the nucleoplasm but are not associated with nuclear DNA replication sites during S-phase. These results suggest that de novo methylation by Dnmt3a and Dnmt3b occurs independently of the replication process and might involve an alternative mechanism for accessing the target DNA. The different subcellular distribution of mammalian DNA methyltransferases might thus contribute to the regulation of DNA methylation.  相似文献   

3.
4.
Mammalian DNA methyltransferases prefer poly(dI-dC) as substrate   总被引:1,自引:0,他引:1  
The synthetic duplex DNA, poly(dI-dC).poly(dI-dC), is methylated in vitro by human or murine DNA methyltransferases at 20-100 times the rate of other nonmethylated DNAs. Preparation of the hemimethylated derivative, poly(dI-dMeC).poly(dI-dC), of this polymer increases its effectiveness as a substrate by 2-fold, making it 4-10 times more effective as a substrate for mammalian DNA methyltransferases than any other hemimethylated DNA so far reported. However, the apparent slower rate of de novo methylation of poly(dI-dC).poly(dI-dC) as compared to the hemimethylated derivative is due to substrate inhibition, unique to the unmethylated polymer, as the rates of de novo and maintenance methylation are identical at low substrate concentrations.  相似文献   

5.
刘泽军  江海宏 《生命科学》2002,14(3):141-143
DNA甲基化在基因调节和动物发育中起着重要作用。负责DNA甲基化作用的酶尔为DNA甲基转移酶(Dnmts)。到目前为止,在哺乳动物细胞中已经鉴定了三种DNA甲基转移酶基因家族,即Dnmt1、Dnmt2和Dnmt3。鉴定和研究DNA甲基转移酶对阐明DNA甲基化机制起着关键的作用。  相似文献   

6.
Plant DNA methyltransferases   总被引:46,自引:0,他引:46  
DNA methylation is an important modification of DNA that plays a role in genome management and in regulating gene expression during development. Methylation is carried out by DNA methyltransferases which catalyse the transfer of a methyl group to bases within the DNA helix. Plants have at least three classes of cytosine methyltransferase which differ in protein structure and function. The METI family, homologues of the mouse Dnmt1 methyltransferase, most likely function as maintenance methyltransferases, but may also play a role in de novo methylation. The chromomethylases, which are unique to plants, may preferentially methylate DNA in heterochromatin; the remaining class, with similarity to Dnmt3 methyltransferases of mammals, are putative de novo methyltransferases. The various classes of methyltransferase may show differential activity on cytosines in different sequence contexts. Chromomethylases may preferentially methylate cytosines in CpNpG sequences while the Arabidopsis METI methyltransferase shows a preference for cytosines in CpG sequences. Additional proteins, for example DDM1, a member of the SNF2/SWI2 family of chromatin remodelling proteins, are also required for methylation of plant DNA.  相似文献   

7.
DNA methyltransferase activities have been partially purified from unfertilized eggs and blastula nuclei of sea urchin embryos. Comparative studies, using different DNAs as substrates, show that the two preparations are most active on hemimethylated and single-strand DNA, but they methylate, though at a lower rate, also on double-strand DNA. The two activities show distinctive efficiencies in methylating plasmid DNAs and marked differences in the rate of methyl transfer to DNAs in different structural states: linear, relaxed, or supercoiled. The ratio of the apparent specific activity of the two preparations depends on the particular DNA used as substrate and its structure. Methylation analysis of the restriction fragments of methylated plasmid DNAs shows a linear correlation between introduced methyl groups and the percent of CpG of each particular fragment, indicating that methylation is substantially random and sequence is less relevant than conformation in determining enzyme efficiency. The data do not permit us to decide if the two activities are different enzymes or the same enzyme with different modulating factors.  相似文献   

8.
9.
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N(6)-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N(6)-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N(6)-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential 'sequence specificity' could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.  相似文献   

10.
Taxol is a valuable plant-derived drug showing activity against various cancer types. Worldwide efforts had been made to overcome the supply problem, because the supply by isolation from the bark of the slow-growing yew trees is limited. Plant cell cultures as well as chemical and biotechnological semisynthesis are processes, which are intensively investigated for the production of taxanes paclitaxel (Taxol) and docetaxel (Taxotere) in the last few years. This article provides a comparison of the current research on taxane biosynthesis and production in yew cell cultures.  相似文献   

11.
DNA methyltransferases get connected to chromatin   总被引:12,自引:0,他引:12  
  相似文献   

12.
哺乳动物DNA甲基化酶分子量较大,对蛋白水解酶非常敏感。该酶优先作用于半甲基化DNA中的GpG序列的胞嘧啶;基C-端约500aa帱10个微区构成,具有较强的保守性;而N-端约350aa带电荷和极性较强,但易被蛋白酶水解。而甲基化的完成则可能采用“没动”机制。  相似文献   

13.
DNA cytosine methylation is a reversible epigenetic mark regulating gene expression. Aberrant methylation profiles are concomitant with developmental defects and cancer. Numerous studies in the past decade have identified enzymes and pathways responsible for active DNA demethylation both on a genome-wide as well as gene-specific scale. Recent findings have strengthened the idea that 5-methylcytosine oxidation catalyzed by members of the ten-eleven translocation (Tet1–3) oxygenases in conjunction with replication-coupled dilution of the conversion products causes the majority of genome-wide erasure of methylation marks during early development. In contrast, short and long patch DNA excision repair seems to be implicated mainly in gene-specific demethylation. Growth arrest and DNA damage-inducible protein 45 a (Gadd45a) regulates gene-specific demethylation within regulatory sequences of limited lengths raising the question of how such site specificity is achieved. A new study identified the protein inhibitor of growth 1 (Ing1) as a reader of the active chromatin mark histone H3 lysine 4 trimethylation (H3K4me3). Ing1 binds and directs Gadd45a to target sites, thus linking the histone code with DNA demethylation.  相似文献   

14.
Epigenetic modification of DNA leads to changes in gene expression. DNA methyltransferases (DNMTs) comprise a family of nuclear enzymes that catalyze the methylation of CpG dinucleotides, resulting in an epigenetic methylome distinguished between normal cells and those in disease states such as cancer. Disrupting gene expression patterns through promoter methylation has been implicated in many malignancies and supports DNMTs as attractive therapeutic targets. This review focuses on the rationale of targeting DNMTs in cancer, the historical approach to DNMT inhibition, and current marketed hypomethylating therapeutics azacytidine and decitabine. In addition, we address novel DNMT inhibitory agents emerging in development, including CP-4200 and SGI-110, analogs of azacytidine and decitabine, respectively; the oligonucleotides MG98 and miR29a; and a number of reversible inhibitors, some of which appear to be selective against particular DNMT isoforms. Finally, we discuss future opportunities and challenges for next-generation therapeutics.  相似文献   

15.
The ability to target methylation to specific genomic sites would further the study of DNA methylation’s biological role and potentially offer a tool for silencing gene expression and for treating diseases involving abnormal hypomethylation. The end-to-end fusion of DNA methyltransferases to zinc fingers has been shown to bias methylation to desired regions. However, the strategy is inherently limited because the methyltransferase domain remains active regardless of whether the zinc finger domain is bound at its cognate site and can methylate non-target sites. We demonstrate an alternative strategy in which fragments of a DNA methyltransferase, compromised in their ability to methylate DNA, are fused to two zinc fingers designed to bind 9 bp sites flanking a methylation target site. Using the naturally heterodimeric DNA methyltransferase M.EcoHK31I, which methylates the inner cytosine of 5′-YGGCCR-3′, we demonstrate that this strategy can yield a methyltransferase capable of significant levels of methylation at the target site with undetectable levels of methylation at non-target sites in Escherichia coli. However, some non-target methylation could be detected at higher expression levels of the zinc finger methyltransferase indicating that further improvements will be necessary to attain the desired exclusive target specificity.  相似文献   

16.
DNA methytransferases (MTs) in bacteria are best understood in the context of restriction-modification (R-M) systems, which act as bacterial immune systems against incoming DNA including phages, but have also been described as selfish elements. But several orphan MTs, which are not associated with any restriction enzyme, have also been characterized and may protect against parasitism by R-M systems. The occurrence of MTs in these two contexts, namely as part of R-M systems or as orphans, is poorly understood. Here we report the results of a comparative genomic survey of DNA MTs across ~1000 bacterial genomes. We show that orphan MTs overwhelm R-M systems in their occurrence. In general, R-M MTs are poorly conserved, whereas orphans are nearly as conserved within a genus as any average gene. However, oligonucleotide usage and conservation patterns across genera suggest that both forms of MTs might have been horizontally acquired. We suggest that many orphan MTs might be 'degradation' products of R-M systems, based on the properties of orphan MTs encoded adjacent to highly diverged REs. In addition, several fully degraded R-M systems exist in which both the MT and the RE are highly divergent from their corresponding reference R-M pair. Despite their sporadic occurrence, conserved R-M systems are present in strength in two highly transformable genera, in which they may contribute to selection against integration of foreign DNA.  相似文献   

17.
Mammalian DNA helicase.   总被引:3,自引:5,他引:3       下载免费PDF全文
A forked DNA was constructed to serve as a substrate for DNA helicases. It contains features closely resembling a natural replication fork. The DNA was prepared in large amounts and was used to assay displacement activity during isolation from calf thymus DNA polymerases alpha holoenzyme. One form of DNA polymerase alpha holoenzyme is possibly involved leading strand replication at the replication fork and possesses DNA dependent ATPase activity (Ottiger, H.-P. and Hübscher, U. (1984) Proc. Natl. Acad. Sci. USA 81, 3993-3997). The enzyme can be separated from DNA polymerase alpha by velocity sedimentation in conditions of very low ionic strength and then be purified by chromatography on Sephacryl S-200 and ATP-agarose. At all stages of purification, DNA dependent ATPase and displacement activity profiles were virtually superimposable. The DNA dependent ATPase can displace a hybridized DNA fragment with a short single-stranded tail at its 3'hydroxyl end only in the presence of ATP, and this displacement relies on ATP hydrolysis. Furthermore, homogeneous single-stranded binding proteins from calf thymus as well as from other tissues cannot perform this displacement reaction. By all this token the DNA dependent ATPase appears to be a DNA helicase. It is suggested that this DNA helicase might act in concert with DNA polymerase alpha at the leading strand, possibly pushing the replication fork ahead of the polymerase.  相似文献   

18.
DNA bending induced by six DNA (cytosine-5) methyltransferases was studied using circular permutation gel mobility shift assay. The following bend angles were obtained: M.BspRI (GGm5CC), 46–50°; M.HaeIII (GGm5CC), 40–43°; M.SinI (GGWm5CC), 34–37°; M.Sau96I (GGNm5CC), 52–57°; M.HpaII (Cm5CGG), 30°; and M.HhaI (Gm5CGC), 13°. M.HaeIII was also tested with fragments carrying a methylated binding site, and it was found to induce a 32° bend. A phase-sensitive gel mobility shift assay, using a set of DNA fragments with a sequence-directed bend and a single methyltransferase binding site, indicated that M.HaeIII and M.BspRI bend DNA toward the minor groove. The DNA curvature induced by M.HaeIII contrasts with the lack of DNA bend observed for a covalent M.HaeIII–DNA complex in an earlier X-ray study. Our results and data from other laboratories show a correlation between the bending properties and the recognition specificities of (cytosine-5) methyltransferases: enzymes recognizing a cytosine 3′ to the target cytosine tend to induce greater bends than enzymes with guanine in this position. We suggest that the observed differences indicate different mechanisms employed by (cytosine-5) methyltransferases to stabilize the helix after the target base has flipped out.  相似文献   

19.
The authors describe the discovery and characterization of several structural classes of small-molecule inhibitors of bacterial DNA adenine methyltransferases. These enzymes are essential for bacterial virulence (DNA adenine methyltransferase [DAM]) and cell viability (cell cycle-regulated methyltransferase [CcrM]). Using a novel high-throughput fluorescence-based assay and recombinant DAM and CcrM, the authors screened a diverse chemical library. They identified 5 major structural classes of inhibitors composed of more than 350 compounds: cyclopentaquinolines, phenyl vinyl furans, pyrimidine-diones, thiazolidine-4-ones, and phenyl-pyrroles. DNA binding assays were used to identify compounds that interact directly with DNA. Potent compounds selective for the bacterial target were identified, whereas other compounds showed greater selectivity for the mammalian DNA cytosine methyltransferase, Dnmt1. Enzyme inhibition analysis identified mechanistically distinct compounds that interfered with DNA or cofactor binding. Selected compounds demonstrated cell-based efficacy. These small-molecule DNA methyltransferase inhibitors provide useful reagents to probe the role of DNA methylation and may form the basis of developing novel antibiotics.  相似文献   

20.
In eukaryotes, C5-cytosine methylation is a common mechanism associated with a variety of functions such as gene regulation or control of genomic stability. Different subfamilies of eukaryotic methyltransferases (MTases) have been identified, mainly in metazoa, plants, and fungi. In this paper, we used hidden Markov models to detect MTases in completed or almost completed eukaryotic genomes, including different species of Protozoa. A phylogenetic analysis of MTases enabled us to define six subfamilies of MTases, including two new subfamilies. The dnmt1 subfamily that includes all the known MTases with a maintenance activity seems to be absent in the Protozoa. The dnmt2 subfamily seems to be the most widespread, being present even in the nonmethylated Dictyostelium discoideum. We also found two dnmt2 members in the bacterial genus Geobacter, suggesting that horizontal transfers of MTases occurred between eukaryotes and prokaryotes. Even if the direction of transfer cannot be determined, this relationship might be useful for understanding the function of this enigmatic subfamily of MTases. Globally, our analysis reveals a great diversity of MTases in eukaryotes, suggesting the existence of different methylation systems. Our results also suggest acquisitions and losses of different MTases in every eukaryotic lineage studied and that some eukaryotes appear to be devoid of methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号