首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse F9 embryocarcinoma (EC) cells constitute a well established cell-autonomous model system for investigating retinoid signaling in vitro as, depending on culture conditions, retinoic acid (RA) can induce their differentiation into either primitive, parietal or visceral extraembryonic endoderm-like cells. These RA-induced differentiations are accompanied by decreases in proliferation rates, modifications of expression of subsets of RA-target genes, and induction of apoptosis. To elucidate the roles played by the multiple retinoid receptors (RARs and RXRs) in response to RA treatments, F9 EC cells lacking one or several RARs or RXRs were engineered through homologous recombination. Mutated RARs and/or RXRs were then reexpressed in given RAR or RXR null backgrounds. WT and mutant cells were also treated with different combinations of ligands selective for RXRs and/or for each of the three RAR isotypes. These studies lead to the conclusion that most RA-induced events (e.g. primitive and visceral differentiation, growth arrest, apoptosis and activation of expression of a number of genes) are transduced by RARgamma/RXRalpha heterodimers, whereas some other events (e.g. parietal differentiation) are mediated by RARalpha/RXRalpha. heterodimers. They also demonstrate that both AF-1 and AF-2 activation functions of RARs and RXRs, as well as their phosphorylation, are differentially required in these RA-induced events. In RARgamma/RXRalpha heterodimers, the phosphorylation of RARgamma is necessary for triggering primitive differentiation, while that of RXRalpha is required for growth arrest. On the other hand, phosphorylation of RARalpha is necessary for parietal differentiation. Thus, retinoid receptors are sophisticated signal integrators that transduce not only the effects of their cognate ligands, but also those of ligands that bind to membrane receptors.  相似文献   

2.
The transactivation of nuclear receptors is regulated by both ligand binding and phosphorylation. We previously showed that RARalpha (retinoic acid receptor alpha) phosphorylation by c-Jun N-terminal kinase contributes to retinoid resistance in a subset of NSCLC cells (non-small cell lung cancer cells), but the aetiology of this resistance in the remainder has not been fully elucidated [Srinivas, Juroske, Kalyankrishna, Cody, Price, Xu, Narayanan, Weigel and Kurie (2005) Mol. Cell. Biol. 25, 1054-1069]. In the present study, we report that Akt, which is constitutively activated in NSCLC cells, phosphorylates RARalpha and inhibits its transactivation. Biochemical and functional analyses showed that Akt interacts with RARalpha and phosphorylates the Ser96 residue of its DNA-binding domain. Mutation of Ser96 to alanine abrogated the suppressive effect of Akt. Overexpression of a dominant-negative form of Akt in an NSCLC cell line decreased RAR phosphorylation, increased RAR transactivation and enhanced the growth-inhibitory effects of an RAR ligand. The findings presented here show that Akt inhibits RAR transactivation and contributes to retinoid resistance in a subset of NSCLC cells.  相似文献   

3.
4.
5.
All-trans-retinoic acid (trans-RA) and other retinoids exert anticancer effects through two types of retinoid receptors, the RA receptors (RARs) and retinoid X receptors (RXRs). Previous studies demonstrated that the growth-inhibitory effects of trans-RA and related retinoids are impaired in certain estrogen-independent breast cancer cell lines due to their lower levels of RAR alpha and RARbeta. In this study, we evaluated several synthetic retinoids for their ability to induce growth inhibition and apoptosis in both trans-RA-sensitive and trans-RA-resistant breast cancer cell lines. Our results demonstrate that RXR-selective retinoids, particularly in combination with RAR-selective retinoids, could significantly induce RARbeta and inhibit the growth and induce the apoptosis of trans-RA-resistant, RAR alpha-deficient MDA-MB-231 cells but had low activity against trans-RA-sensitive ZR-75-1 cells that express high levels of RAR alpha. Using gel retardation and transient transfection assays, we found that the effects of RXR-selective retinoids on MDA-MB-231 cells were most likely mediated by RXR-nur77 heterodimers that bound to the RA response element in the RARbeta promoter and activated the RARbeta promoter in response to RXR-selective retinoids. In contrast, growth inhibition by RAR-selective retinoids in trans-RA-sensitive, RAR alpha-expressing cells most probably occurred through RXR-RAR alpha heterodimers that also bound to and activated the RARbeta promoter. In MDA-MB-231 clones stably expressing RAR alpha, both RARbeta induction and growth inhibition by RXR-selective retinoids were suppressed, while the effects of RAR-selective retinoids were enhanced. Together, our results demonstrate that activation of RXR can inhibit the growth of trans-RA-resistant MDA-MB-231 breast cancer cells and suggest that low cellular RAR alpha may regulate the signaling switch from RAR-mediated to RXR-mediated growth inhibition in breast cancer cells.  相似文献   

6.
Characterization of retinoic acid receptor-deficient keratinocytes   总被引:4,自引:0,他引:4  
Retinoids are essential for normal epidermal growth and differentiation and show potential for the prevention or treatment of various epithelial neoplasms. The retinoic acid receptors (RARalpha, -beta, and -gamma) are transducers of the retinoid signal. The epidermis expresses RARgamma and RARalpha, both of which are potential mediators of the effects of retinoids in the epidermis. To further investigate the role(s) of these receptors, we derived transformed keratinocyte lines from wild-type, RARalpha, RARgamma, and RARalphagamma null mice and investigated their response to retinoids, including growth inhibition, markers of growth and differentiation, and AP-1 activity. Our results indicate that RARgamma is the principle receptor contributing to all-trans-retinoic acid (RA)-mediated growth arrest in this system. This effect partially correlated with inhibition of AP-1 activity. In the absence of RARs, the synthetic retinoid N-(4-hydroxyphenyl)-retinamide inhibited growth; this was not observed with RA, 9-cis RA, or the synthetic retinoid (E)-4-[2-(5, 5, 8, 8 tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propenyl] benzoic acid. Finally, both RARalpha and RARgamma differently affected the expression of some genes, suggesting both specific and overlapping roles for the RARs in keratinocytes.  相似文献   

7.
8.
9.
10.
11.
12.
Retinoids are known to inhibit the growth of hormone-dependent but not that of hormone-independent breast cancer cells. We investigated the involvement of retinoic acid (RA) receptors (RARs) in the differential growth-inhibitory effects of retinoids and the underlying mechanism. Our data demonstrate that induction of RAR beta by RA correlates with the growth-inhibitory effect of retinoids. The hormone-independent cells acquired RA sensitivity when the RAR beta expression vector was introduced and expressed in the cells. In addition, RA sensitivity of hormone-dependent cells was inhibited by a RAR beta-selective antagonist and the expression of RAR beta antisense RNA. Introduction of RAR alpha also restored RA sensitivity in hormone-independent cells, but this restoration was accomplished by the induction of endogenous RAR beta expression. Furthermore, we show that induction of apoptosis contributes to the growth-inhibitory effect of RAR beta. Thus, RAR beta can mediate retinoid action in breast cancer cells by promoting apoptosis. Loss of RAR beta, therefore, may contribute to the tumorigenicity of human mammary epithelial cells.  相似文献   

13.
14.
Retinoic acid (RA) inhibits adipocyte differentiation of 3T3-L1 preadipocytes but is effective only early in adipogenesis. RA prevented induction of the adipogenic factors PPARgamma and C/EBPalpha. Using receptor-specific ligands, we determined that the effects of RA were mediated by liganded RA receptors (RARs) rather than retinoid X receptors. Preadipocytes expressed primarily RARalpha and RARgamma; during adipocyte differentiation, RARalpha gene expression was nearly constant, whereas RARgamma1 mRNA and protein levels dramatically decreased. Ectopic expression of RARgamma1 extended the period of effectiveness of RA by 24 to 48h; RARalpha expression had a similar effect, suggesting functional redundancy of RAR subtypes. Remarkably, RA inhibited differentiation when added after PPARgamma1 and PPARgamma2 proteins had already been expressed and resulted in the loss of PPARgamma proteins from cells. By 72 to 96 h after the induction of differentiation, RA failed to prevent differentiation of even ectopic-RAR-expressing cells. Thus, the unresponsiveness of 3T3-L1 preadipocytes to RA after the induction of differentiation is initially due to the reduction in cellular RAR concentration rather than to the induction of PPARgamma. At later times cells continue along the differentiation pathway in a manner which is RA and RAR independent.  相似文献   

15.
16.
17.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RARα and RXRα, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RARα and RXRα. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 ± 2%) being observed after 4 days of treatment with Ro 25, a RXRα specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 ± 10%) occurred at 48 h with the RXRα-specific ligand. The RARα-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXRα in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA. J. Cell. Physiol. 176:595–601, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
19.
The biological actions of retinoids are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We have recently reported that decreased expression of RARα and RXRα has an important role in high glucose (HG)-induced cardiomyocyte apoptosis. However, the regulatory mechanisms of HG effects on RARα and RXRα remain unclear. Using neonatal cardiomyocytes, we found that ligand-induced promoter activity of RAR and RXR was significantly suppressed by HG. HG promoted protein destabilization and serine-phosphorylation of RARα and RXRα. Proteasome inhibitor MG132 blocked the inhibitory effect of HG on RARα and RXRα. Inhibition of intracellular reactive oxidative species (ROS) abolished the HG effect. In contrast, H(2)O(2) stimulation suppressed the expression and ligand-induced promoter activity of RARα and RXRα. HG promoted phosphorylation of ERK1/2, JNK and p38 MAP kinases, which was abrogated by an ROS inhibitor. Inhibition of JNK, but not ERK and p38 activity, reversed HG effects on RARα and RXRα. Activation of JNK by over expressing MKK7 and MEKK1, resulted in significant downregulation of RARα and RXRα. Ligand-induced promoter activity of RARα and RXRα was also suppressed by overexpression of MEKK1. HG-induced cardiomyocyte apoptosis was potentiated by activation of JNK, and prevented by all-trans retinoic acid and inhibition of JNK. Silencing the expression of RARα and RXRα activated the JNK pathway. In conclusion, HG-induced oxidative stress and activation of the JNK pathway negatively regulated expression/activation of RAR and RXR. The impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia induced cardiomyocyte apoptosis.  相似文献   

20.
Metabolic labeling and detection with a methylated lysine-specific antibody confirm lysine methylation of RAR alpha in mammalian cells. We previously reported Lys (347) trimethylation of mouse retinoic acid receptor alpha (RAR alpha) in the ligand binding domain (LBD) that affected ligand sensitivity of the dissected LBD. Here we report two monomethylated residues, Lys (109) and Lys (171) identified by LC-ESI-MS/MS in the DNA binding domain (DBD) and the hinge region, which affect retinoic acid (RA) sensitivity, coregulator interaction and heterodimerization with retinoid X receptor (RXR) in the context of the full-length protein. Constitutive negative mutation at Lys (109), but not Lys (171), reduces RA-dependent activation. Methylation at Lys (109) plays a more dominant role than trimethylation at Lys (347) in terms of RA activation of the full-length receptor. Lys (109) is located in a homologous sequence (CEGC K GFFRRS) of the DBD in RARs and is conserved in the nuclear receptor superfamily even across the species boundary. This study uncovers a potential role for monomethylation at Lys (109) in coordinating the synergy between DBD and LBD for ligand-dependent activation of RAR alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号