首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
DNA methylation is an epigenetic regulatory mechanism of gene expression which can be associated with developmental phases and in vitro morphogenetic competence in plants. The present work evaluated the effects of 5-azacytidine (AzaC) and 2,4-dichlorophenoxyacetic acid (2,4-D) on Acca sellowiana somatic embryogenesis (SE) and global DNA methylation levels by high-performance liquid chromatography mass spectrometry (HPLC/MS/MS). 2,4-D-free treatments revealed no somatic embryo formation in both accessions tested. Treatments supplemented with 2,4-D pulse plus AzaC in the culture medium resulted in increased embryo formation. In AzaC-free treatment, HPLC/MS/MS analysis showed a gradual increase in methylation levels in cultures of both accessions tested during SE induction. Treatment with AzaC and 2,4-D-free resulted in a marked decrease in methylation for both accessions, ranging from 37.6 to 20.8?%. In treatment with 2,4-D and AzaC combined, the 85 accession showed increasing global methylation levels. Otherwise, the 101X458 accession, in the same treatment, showed a decrease between 10 and 20?days, followed by an increase after 30?days (39.5, 36.2 and 41.6?%). These results indicate that 2,4-D pulse combined with AzaC improves SE induction. However, the conversion phase showed that although positively influencing SE induction, AzaC had a dysregulatory effect on the stage of autotrophic plant formation, resulting in significantly lower conversion rates. The results suggest that DNA methylation dramatically influences SE in Acca sellowiana, and global DNA methylation dynamics are related to morphogenetic response. Key message 5-Azacytidine combined with 2,4-D increases the number of Acca sellowiana somatic embryos. Global DNA methylation is directly affected by these compounds.  相似文献   

2.
The use of cytosine analogue--5-Azacytidine(5AzaC), derepression of ribosomal genes has been studied in one of organising chromosomes in the African green monkey RAMT cell line in which the nucleolar organizer region (NOR) in parental cells was active. The effect of 5AzaC on the functional state of NOR was assessed by the length of the secondary constriction in this chromosome and by the intensity of Ag-staining of NOR. 5AzaC was added to the cell culture at concentrations 2-16 M, either immediately after the cell passage or at the 24th h from the beginning of cell cultivation for the following 17-34 hours. As a control the cells cultivated in the absence of 5AzaC were used. Comparison of control cells with those treated with 5AzaC showed: 1) increase of the length of the second constriction in the chromosome with the initial inactive NOR in the 5AzaC--treated cells; 2) a marked increase of the intensity of NOR's Ag-staining in the same chromosome after incorporation of 5-AzaC into DNA. The conclusion about the methylation of cytosine bases in the DNA of ribosomal genes in one NOR organising chromosomes in RAMT cell line was made.  相似文献   

3.
Modifications of DNA and chromatin are fundamental for the establishment and maintenance of cell type-specific gene expression patterns that constitute cellular identities. To test whether the developmental potential of fetal brain-derived cells that form floating sphere colonies (neurospheres) can be modified by destabilizing their epigenotype, neurosphere cells were treated with chemical compounds that alter the acetylation and methylation patterns of chromatin and DNA. Intravenous infusion of bulk or clonally derived neurosphere cells treated with a combination of trichostatin A (TSA) plus 5-aza-2'-deoxycytidine (AzaC) (TSA/AzaC neurosphere cells) yielded long-term, multilineage and transplantable neurosphere-derived haematopoietic repopulation. Untreated neurosphere cells exhibited no haematopoietic repopulation activity. The neurosphere-derived haematopoietic cells showed a diploid karyotype, indicating that they are unlikely to be products of cell fusion events, a conclusion strengthened by multicolour fluorescence in situ hybridization. Our results indicate that altering the epigenotype of neurosphere cells followed by transplantation enables the generation of neurosphere-derived haematopoietic cells.  相似文献   

4.
In Arabidopsis, adventitious shoots are formed at a high frequency when the calli are induced from roots or hypocotyls cultured on callus induction medium (CIM) and then transferred to shoot induction medium (SIM). The prolonged duration of culture on CIM decreased the frequency of shoot regeneration. However, when 5′-azacitidine (AzaC), an inhibitor of DNA methylation, was added to CIM, the excess culturing on CIM did not decrease the frequency of shoot regeneration. The level of methyl cytosine was up-regulated when hypocotyl explants were cultured on CIM for 2 weeks. We examined the expression patterns of genes that are involved in the formation or regeneration of shoots. Prolonged duration of culture on CIM up-regulated the CUC1, CLV1, CLV3, ESR1, and WUS mRNA levels, and the addition of AzaC to CIM reduced their expression levels. Our results suggest that an increase in DNA methylation decreased the shoot-forming ability and that AzaC can partially recover this ability.  相似文献   

5.
Shoot bud regeneration from Petunia leaf disks was inhibited when they were cultured with the demethylating agents, 5-azacytidine (AzaC) and 5-aza-2′-deoxycytidine (AzadC), in shoot induction (SI) medium. Explants induced shoot primordia if they were transferred after 1 week from the medium containing the drugs to medium without drugs. The fresh weight of leaf disks cultured on SI medium for 2 weeks in the presence of the drugs was 60–80% lower when compared to control shoot-forming cultures. Internode length was reduced when shoots were transferred to phytohormone-free Murashige and Skoog medium containing the drugs. However, no other morphological abnormalities were seen in these shoots, even at 20 μm AzaC or 5 μm AzadC. Coupled restriction enzyme digestion (with HpaII and MspI) and random amplification of genomic DNA was performed to detect the level of methylation of CCGG sites in the DNA of the explants exposed to AzaC and AzadC. Over 15 amplified bands were detectable in the control. Five of these bands were absent in the amplified products when digested DNA from the drug-treated explants was used as the template, showing that hypomethylation of DNA had occurred. This suggests that inhibition of shoot bud formation in the presence of the drugs AzaC and AzadC may be due to the altered methylation status. Received: 7 January 1997 / Revision received: 17 February 1997 / Accepted: 1 March 1997  相似文献   

6.

Background  

5-AzaCytidine (AzaC) is a DNA demethylating drugs that has been shown to inhibit cell growth and to induce apoptosis in certain cancer cells. Induced expression of the galectin1 (Gal1) protein, a galactoside-binding protein distributed widely in immune cells, has been described in cultured hepatoma-derived cells treated with AzaC and this event may have a role in the effect of the drug. According to this hypothesis, we investigated the effect of AzaC and Gal1 on human lymphoid B cells phenotype.  相似文献   

7.
The inhibitor of DNA-methylation, 5-azacytidine (5- AzaC ) induced the appearance of cytokeratin-containing cells in several mesenchymal cell lines such as teratocarcinoma-derived fibroblasts, preadipocytes and myoblasts, NIH-3T3 fibroblasts and human embryonic fibroblasts. At optimal 5- AzaC concentrations the proportion of such cells was in the range of 10(-1) compared with 10(-6) -10(-4) in non-treated cultures. Dose-response curves indicated that the induction of cytokeratin was the result of an interaction of the drug with few targets. Stable, mature, keratinocyte cell lines, as well as lines of myoblasts and astrocytes, could be isolated from a teratocarcinoma-derived preadipocyte line, showing that 5- AzaC is able to provoke a wide range of complete phenotypic conversions. In these cell lines, the intermediate filaments corresponded to the morphological phenotype. Altogether, the results suggest that 5- AzaC preferentially activates certain genes.  相似文献   

8.
Cellular differentiation, cytidine analogs and DNA methylation   总被引:37,自引:0,他引:37  
P A Jones  S M Taylor 《Cell》1980,20(1):85-93
The nucleoside analog 5-azacytidine (5-aza-CR) induced marked changes in the differentiated state of cultured mouse embryo cells and also inhibited the methylation of newly synthesized DNA. The DNA strand containing 5-aza-CR remained undermethylated in the round of DNA synthesis following analog incorporation. The extent of inhibition of DNA modification and induction of muscle cells in treated cultures were dependent on the 5-aza-CR concentration over a narrow dose range. Experiments with the restriction enzyme Hpa II, which is sensitive to cytosine methylation in the sequence CCGG, demonstrated that the DNA synthesized in 5-aza-CR-treated cultures was maximally undermethylated 48 hr after treatment. Three other analogs of cytidine, containing a modification in the 5 position of the pyrimidine ring [5-aza-2'-deoxycytidine(5-aza-CdR), pseudoisocytidine (psi ICR) and 5-fluoro-2'-deoxycytidine(FCdR)] also induced the formation of muscle cells and inhibited DNA methylation. In contrast, 1-beta-D-arabinofuranosylcytosine (araC) and 6-azacytidine (6-aza-CR) did not inhibit DNA methylation or induce muscle formation, whereas 5-6-dihydro-5-azacytidine (dH-aza-CR) was a poor inducer of muscle cells and a poor inhibitor of DNA methylation. These results provide experimental evidence for a role for DNA modification in differentiation, and suggest that cytidine analogs containing an altered 5 position perturb previously established methylation patterns to yield new cellular phenotypes.  相似文献   

9.
When mouse-teratocarcinoma-derived fibroblasts (1246 cell line) are subjected to treatment with the inhibitor of DNA methylation, 5-Azacytidine (5 AzaC), they transiently express at 55-kilodalton intermediate-filament protein recognized by the epithelial-specific monoclonal antibody, TROMA-1, although they retain a fibroblastic morphology. However, rare clones (e.g., the 1339 cell line) that permanently express the antigen recognized by TROMA-1 can be derived from the 5 AzaC-treated 1246 population, and these clones have an epithelial phenotype. In the present study, we used cloned DNA probes to demonstrate that, in 1246 fibroblasts, 5 AzaC induces the appearance of Endo-A mRNA. High levels of Endo-A mRNA were also detected in the epithelial derivative, cell line 1339. In both cases, the capping site of the Endo-A mRNA was found to be the same as that in epithelial cells which normally express this RNA.  相似文献   

10.
Efficient and sustained transgene expression are desirable features for many envisioned gene therapy applications, yet synthetic vectors tested to date are rarely successful in achieving these properties. Substantial research efforts have focused on protection of plasmid DNA from nuclease attack as well as increasing nuclear transport of plasmids, resulting in significant but still limited gains. We show here that a further barrier to efficient and sustained expression exists for synthetic vectors: plasmid DNA methylation. We have investigated this barrier for transient expression of a green fluorescent protein (GFP) transgene delivered via Lipofectamine, by testing the effects of culturing C3A human hepatoblastoma cells with 5-Azacytidine (AzaC), an irreversible inhibitor of DNA methyltransferase. To control for loss of plasmids by dilution during mitosis, transfected cells were growth-arrested for 1 week and their subsequent GFP expression quantified by FACS. In the presence of AzaC, a significantly greater fraction of transfected cells remained GFP-positive and possessed higher levels of GFP production relative to AzaC-untreated cells. Additionally, we have applied a Methyl-Assisted PCR (MAP) assay to quantify a subset of methylated CpG sites in the GFP gene. When MAP was performed on plasmids isolated from transfected cells, the extent of methylation was found to be inversely related to the level of GFP expression.  相似文献   

11.
12.
In a previous study (22) we found that transient exposure of C3H 10T1/2 mouse embryo fibroblasts to 5-azacytidine (5-azaC) induced several changes in growth properties. The treated cells showed progressive changes in morphology, saturation density, growth rate, and serum dependence. By passage 5, the cells had acquired the ability to grow in 0.3% agarose, and by passage 30, they had given rise to fully transformed foci that grew in agarose, agar, and liquid suspension. This progression was rapidly accelerated if the cultures derived from 5-azaC-treated cells were exposed for 48 h to the carcinogen benzo[a]pyrene. The present studies demonstrate that both type C and type A, but not type B, retrovirus-related sequences were expressed in the 5-azaC-treated cells. There was negligible expression of these sequences in the control 10T1/2 cells. The level of expression of the related RNAs tended to correlate with loss of anchorage dependence and other markers of an increase in the transformed phenotype. These changes were associated with hypomethylation of the corresponding cellular DNA sequences, as revealed by differential digestion with the restriction enzymes HpaII and MspI. These studies provide evidence that aberrations in DNA methylation and induction of expression of certain endogenous retroviruses may be one of a series of critical events during the course of multistage carcinogenesis, thus enhancing the evolution of malignant tumor cells.  相似文献   

13.
Phenotypic plasticity is often postulated as a principal characteristic of tuber-bearing wild Solanum species. The hypotheses to explore this observation have been developed based on the presence of genetic variation. In this context, evolutionary changes and adaptation are impossible without genetic variation. However, epigenetic effects, which include DNA methylation and microRNAs expression control, could be another source of phenotypic variation in ecologically relevant traits. To achieve a detailed mechanistic understanding of these processes, it is necessary to separate epigenetic from DNA sequence-based effects and to evaluate their relative importance on phenotypic variability. We explored the potential relevance of epigenetic effects in individuals with the same genotype. For this purpose, a clone of the wild potato Solanum ruiz-lealii, a non-model species in which natural methylation variability has been demonstrated, was selected and its DNA methylation was manipulated applying 5-Azacytidine (AzaC), a demethylating agent. The AzaC treatment induced early flowering and changes in leaf morphology. Using quantitative real-time PCR, we identified four miRNAs up-regulated in the AzaC-treated plants. One of them, miRNA172, could play a role on the early flowering phenotype. In this work, we showed that the treatment with AzaC could provide meaningful results allowing to study both the phenotypic plasticity in tuber-bearing Solanum species and the inter-relation between DNA methylation and miRNA accumulations in a wide range of species.  相似文献   

14.
15.
16.
Pinus pinaster (Ait.) somatic embryogenesis (SE) has been developed during the last decade, and its application in tree improvement programs is underway. Nevertheless, a few more or less important problems still exist, which have an impact on the efficiency of specific SE stages. One phenomenon, which had been observed in embryogenic tissue (embryonal mass, EM) initiated from immature seed, has been the loss of the ability to produce mature somatic embryos after the tissue had been cultured for several months. In an attempt to get insight into the differences between young cultures of EM (3-mo-old since the first subculture) of P. pinaster that produced mature somatic embryos and the same lines of significantly increased age (18-mo-old, aged EM) that stopped producing mature somatic embryos, we analyzed in both types of materials the levels of endogenous hormones, polyamines, the global DNA methylation, and associated methylation patterns. In addition, we included in the analysis secondary EM induced from mature somatic embryos. The analysis showed that the two tested genotypes displayed inconsistent hormonal and polyamine profiles in EM cultures of a similar phenotype and that it might be difficult to attribute one specific profile to a specific culture phenotype among genotypes. Experiments were also undertaken to determine if the global DNA methylation and/or the resulting methylation pattern could be manipulated by treatment of the cultures with a hypomethylating drug 5-azacytidine (5-azaC). An aged EM was exposed to different concentrations and durations of 5-azaC, and its response in culture was established by fresh mass increases and somatic embryo maturation potential. All of the analyses are new in maritime pine, and thus, they provide the first data on the biochemistry of EM in this species related to embryogenic potential.  相似文献   

17.
The bystander effect is a biological phenomenon whereby cells not directly targeted by DNA-damaging agents elicit a response similar to that of targeted cells. Understanding the mechanisms underlying the bystander effect is important not only for radiation risk assessment but also for evaluation of protocols for radiotherapy of tumors. Identification of DNA repair and signal transduction proteins that are induced specifically in bystander cells may help in deducing the molecular mechanism(s) responsible for this complex phenomenon. With this objective, we have studied the expression of replication protein A (RPA), which is involved in various DNA metabolic activities such as replication, repair and recombination. We analyzed RPA expression by immunofluorescence and Western blot techniques in both gamma-irradiated primary human fibroblast cells and bystander cells that were recipients of conditioned growth medium harvested from gamma-irradiated cell cultures. A two- to threefold induction of RPA was observed in bystander MRC5 cells treated with conditioned medium collected from gamma-irradiated WI38 or MRC5 cells. Lack of induction of RPA in sham-manipulated MRC5 cells treated with irradiated medium alone (without cells) indicates that the signal elicited from the irradiated cells is responsible for induction of RPA in bystander cells. RPA was induced more effectively in bystander cells than in irradiated cells at the earliest time analyzed (30 min), and the RPA level declined to that of sham-treated control cells by 24 h after treatment. In addition to RPA, apurinic/apyrimidinic endonuclease (APE, a key enzyme of the base excision repair pathway) also showed enhanced expression in bystander cells. Our findings suggest that the induction of RPA and APE is due to a combination of DNA strand breaks and oxidized base lesions in the genomic DNA of bystander cells.  相似文献   

18.
DNA modification, differentiation, and transformation   总被引:3,自引:0,他引:3  
Substantial evidence has accumulated over the last 5 years that the methylation of cytosine residues in vertebrate DNA is implicated in the control of gene expression. We have used analogs of cytidine, modified in the 5 position, as specific inhibitors of DNA methylation to probe the relationship between this process and cellular differentiation. 5-Azacytidine effected marked changes in the differentiated state of cultured cells and induced the formation of biochemically differentiated muscle, fat, and chondrocytes from mouse fibroblast cell lines. Since the analog is a powerful inhibitor of DNA methylation, we suggest that this inhibition is causally related to the mechanism of phenotypic conversion. DNA extracted from cells treated with 5-azacytidine was hemimethylated and was used as an efficient acceptor of methyl groups in an in vitro reaction in the presence of eukaryotic methylases. In vitro methylation was inhibited if the substrate DNA was preincubated with a diverse range of chemical carcinogens including benzo(a)pyrene diolepoxide. Thus, chemical carcinogens may induce changes in gene expression by alteration of cellular methylation patterns. Recent experiments have also demonstrated that freshly explanted diploid fibroblasts from mice, hamsters, and humans lose substantial quantities of 5-methylcytosine during cell division and aging in culture. Taken together, these experiments suggest that the genomic distribution of 5-methylcytosine might have importance in normal differentiation and also in the aberrant gene expression found in cancer and senescence in culture.  相似文献   

19.
3-Deazaadenosine analogs can function as inhibitors and also as alternative substrates of S-adenosylhomocysteine (AdoHcy) hydrolase. In cells treated with the analogs, AdoHcy invariably accumulates, leading to inhibition of cellular methylation. F9 teratocarcinoma cells, stably transfected with two collagen (IV) promoter-enhancer-CAT constructs and treated with 10 microM 3-deazaadenosine, 3-deaza-(+-)-aristeromycin or 3-deazaneplanocin, showed a strong induction of CAT activities without affecting differentiation. In comparison, the same 3-deaza analogs did not affect the CAT activity in F9 cells transfected with the beta-actin promoter-CAT construct. Furthermore, Northern blot analysis of endogenous mRNA from wild-type F9 cells treated with the 3-deaza nucleosides all showed an induction of the collagen alpha 1(IV) chain mRNA. Thus, the 3-deaza analogs most likely affect DNA methylation because their results are consistent with the previous observation that the integrated collagen alpha 1(IV) promoter-enhancer constructs were activated with 5-azacytidine.  相似文献   

20.
The behavior of cells in primary cultures derived from autonomous and pregnancy-dependent mouse mammary tumors was studied. Despite initial growth both dependent and autonomous mammary tumors produced only short-term primary cultures. Initial plating density had a marked effect on growth with only cultures plated at greater than or equal to 2 X 10(5) cells/cm2 showing any short-termed growth. Time lapse analysis showed that the lack of growth was due to failures of cytokinesis and increased death rate and intermitotic time in cultures plated at less than 2 X 10(5) cells/cm2. Using continuous label autoradiographic techniques, a partial synchronous wave of DNA synthesis was observed with newly plated and restimulated cultures. DNA synthesis reached a peak 24-48 hrs. after plating or restimulation and then dropped to low values for the next few days. Attempts to maintain the initial high rate of DNA synthesis or to induce another round of DNA synthesis by enriched media, increased serum concentrations, or other types of serum and plasma were at best only partially successful. Important hormones necessary for growth of mammary tissue in vivo may be necessary for sustained growth in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号