首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antibodies specific for the Mr 65,000 (flavoprotein) and the Mr 28,000 subunits of the succinic dehydrogenase (SDH) of Bacillus subtilis were obtained. By using these antibodies it was shown that both subunits accumulated in the cytoplasm during 5-aminolevulinic acid starvation of a 5-aminolevulinic acid auxotroph. In the cytoplasm the subunits were not associated since they precipitated essentially independently of each other with subunit-specific antibody. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the cytoplasmic subunits migrated identically with the corresponding subunits from the purified membrane-bound SDH complex. Cytoplasmic subunits were pulse-labeled with L-[35S]methionine during 5-aminolevulinic acid starvation. The labeled subunits bound to the membrane when heme synthesis was resumed and also when protein synthesis was blocked by chloramphenicol before readdition of 5-aminolevulinic acid. The experiments thus demonstrated a precursor relationship between cytoplasmic subunits and the subunits of the membrane-bound SDH complex. All SDH-negative mutants isolated so far carry mutations in the citF locus. None of the mutants was found to have either the Mr 65,000 or the Mr 28,000 SDH subunits in the membrane. Four citF mutants, however, contained both subunits in the cytoplasm. Three of these mutants lacked spectrally detectable cytochrome b558. The respective mutations mapped at one end of the citF locus. These results strongly support our previous suggestion that cytochrome b558 is (part of) a membrane binding site for SDH in B. subtilis.  相似文献   

2.
Bacillus subtilis succinate dehydrogenase (SDH) is composed of two unequal subunits designated Fp (Mr, 65,000) and Ip (Mr. 28,000). The enzyme is structurally and functionally complexed to cytochrome b 558 (Mr, 19,000) in the membrane. A total of 21 B. subtilis SDH-negative mutants were isolated. The mutants fall into five phenotypic classes with respect to the presence and localization of the subunits of the SDH-cytochrome b558 complex. One class contains mutants with an inactive membrane-bound complex. Membrane-bound enzymatically active SDH could be reconstituted in fused protoplasts of selected pairs of SDH-negative mutants. Most likely reconstitution is due to the assembly of preformed subunits in the fused cells. On the basis of the reconstitution data, the mutants tested could be divided into three complementation groups. The combined data of the present and previous work indicate that the complementation groups correspond to the structural genes for the three subunits of the membrane-bound SDH-cytochrome b558 complex. A total of 31 SDH-negative mutants of B. subtilis have now been characterized. The respective mutations all map in the citF locus at 255 degrees on the B. subtilis chromosomal map. In the present paper, we have revised the nomenclature for the genetics of SDH in B. subtilis. All mutations which give an SDH-negative phenotype will be called sdh followed by an isolation number. The designation citF will be omitted, and the citF locus will be divided into three genes: sdhA, sdhB, and sdhC. Mutations in sdhA affect cytochrome b558, mutations in sdhB affect Fp, and mutations in sdhC affect Ip.  相似文献   

3.
A 5-aminolevulinic acid-requiring mutant of Bacillus subtilis was isolated. When the mutant is shifted from medium containing 5-aminolevulinic acid to medium lacking this growth factor, the bacteria continued to grow at undiminished rate for about three generations. The membranes from these bacteria contained severely reduced amounts of cytochrome. The mutant was used to study the role of heme synthesis on synthesis and membrane binding of succinic dehydrogenase (SDH). The amount of SDH in whole-cell lysates in the soluble cytoplasmic fraction and in membranes was determined by one-dimensional (rocket) immunoelectrophoresis with an SDH-specific antiserum. After heme synthesis was blocked, the relative amount of SDH in the membrane decreased, whereas increasing amounts of SDH antigen were found in the cytoplasm. When heme synthesis was resumed on readdition of 5-aminolevulinic acid, the amount of membrane-bound SDH antigen increased at a much faster rate than net synthesis. During a 3-h growth period without 5-aminolevulinic acid, there was little change in the pattern of membrane proteins as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioactively labeled membranes, as compared to membranes from control cultures. However, both the 65,000-dalton and the 28,000-dalton polypeptides of the SDH complex (L. Hederstedt, E. Holmgren, and L. Rutberg, J. Bacteriol. 138:370-376, 1979) were present in decreasing amounts in membranes from 5-aminolevulinic acid-starved bacteria. From these results we suggest that SDH in B. subtilis is synthesized as a soluble protein and becomes membrane bound only when it attaches to a site in the membrane, (part of) which is a cytochrome of b type.  相似文献   

4.
In previous work with membranes of Bacillus subtilis, the succinate dehydrogenase complex was isolated by immunoprecipitation of Triton X-100-solubilized membranes. The complex included a polypeptide with an apparent molecular weight of 19,000, probably attributable to apocytochrome. This paper reports the further characterization of this cytochrome and its relation to the respiratory chain of B. subtilis. The cytochrome was identified as cytochrome b, and its difference absorption spectra showed maxima at 426, 529, and 558 nm at room temperature. The oxidized cytochrome had an absorption maximum at 413 nm. The cytochrome was reduced by succinate in the isolated succinate dehydrogenase complex and in Triton X-100-solubilized membranes. In whole membranes cytochromes b, c, and a were reduced by succinate. In membranes from a mutant containing normal cytochromes but lacking succinate dehydrogenase no reduction of cytochrome was seen with succinate. It was concluded that the isolated succinate dehydrogenase-cytochrome b complex is a functional unit in the intact B. subtilis membrane. An accompanying paper describes cytochrome b as a structural unit involved in the membrane binding of succinate dehydrogenase.  相似文献   

5.
The orientation of the three subunits of the membrane-bound succinate dehydrogenase (SDH)-cytochrome b558 complex in Bacillus subtilis was studied in protoplasts ("right side out") and isolated membranes (random orientation), using immunoadsorption and surface labeling with [35S]diazobenzenesulfonate. Anti-SDH antibodies were adsorbed by isolated membranes but not by protoplasts. The SDH Mr 65,000 flavoprotein subunit was labeled with [35S]diazobenzenesulfonate in isolated membranes but not in protoplasts. The flavoprotein subunit is thus located on the cytoplasmic side of the membrane. The location of the SDH Mr 28,000 iron-protein subunit was not definitely established, but most probably the iron-protein subunit also is located on the cytoplasmic side of the membrane. Antibodies were not obtained to the hydrophobic cytochrome b558. The cytochrome was strongly labeled with [35S]diazobenzenesulfonate in protoplasts, and labeling was also obtained with isolated membranes. Cytochrome b558 is thus exposed on the outside of the membrane. In B. subtilis SDH binds specifically to cytochrome b558, which suggests that the cytochrome is exposed also on the cytoplasmic side of the membrane. The results obtained suggest that the B. subtilis SDH is exclusively located on the cytoplasmic side of the membrane where it is bound to cytochrome b558, which spans the membrane.  相似文献   

6.
Eleven succinate-accumulating mutants of Bacillus subtilis have been mapped by transformation and transduction crosses and characterized with respect to activities of citric acid cycle enzymes. These mutants could be divided into three genetic groups. Nine of the mutants were found to map between argA and leu in the citF locus. A second group was located between lys-1 and trpC2 and the third group could not be located on the B. subtilis chromosome in extensive transduction crosses. All of the citF mutants lack detectable succinate dehydrogenase activity, whereas both of the other groups show a reduced level of this enzyme. In addition, most of the mutants in the citF locus lack cytochrome a, whereas the level of this cytochrome is normal in the other two groups. A procedure has been devised for the solubilization of the succinate dehydrogenase from the membrane of B. subtilis with the non-ionic detergent Brij 58. Some properties of the soluble and bound forms of succinate dehydrogenase are described.  相似文献   

7.
Eleven succinic dehydrogenase (SDH) mutants in Bacillus subtilis were analyzed by crossed immunoelectrophoresis with antiserum prepared against wild-type B. subtilis cytoplasmic membrane. A precipitate which stained for SDH was found in Triton X-100-solubilized wild-type membranes and in membranes from two of the SDH mutants. The remaining nine mutants did not show an SDH-staining precipitate. The respective mutations in these nine mutants all map in one locus, citF (Ohné et al., J. Bacteriol. 115:738-745, 1973). An SDH-specific antiserum was prepared by immunizing rabbits with the SDH precipitate obtained in crossed immunoelectrophoresis with solubilized wild-type membrane. Using this antiserum, it was shown that all of the nine citF mutants lack an SDH-specific antigen in the membrane but five of the citF mutants have a soluble SDH-specific antigen. No major differences were found in sodium dodecyl sulfatepolyacrylamide gels of membrane proteins from wild-type B. subtilis and from SDH mutants. A model for the organization of SDH in B. subtilis is proposed.  相似文献   

8.
A 75,000-dalton protein complex involved in DNA binding during transformation was purified from membranes of competent Bacillus subtilis cells. Previous results (Smith et al., J. Bacteriol. 156:101-108, 1983) showed that the complex contained two polypeptides, polypeptide a (molecular weight, 18,000; isoelectric point, 5.0) and polypeptide b (molecular weight, 17,000; isoelectric point, 4.7) in approximately equal amounts. In the present experiments the two polypeptides were extracted from two-dimensional gels and studied separately and in combination with respect to DNA binding and nuclease activities. For DNA binding the interaction of both polypeptides was required. DNA binding occurred efficiently in the presence of EDTA. Nuclease activity was restricted to polypeptide b. The nucleolytic properties of b were identical to those of the native 75,000-dalton complex. Polypeptide a affected b by reducing its nuclease activity. Analysis of the nuclease subunit b on DNA-containing polyacrylamide gels revealed nuclease activities at four different molecular weight positions. These activities were identical to the major competence-specific nuclease activities which were previously implicated in the entry of donor DNA during transformation (Mulder and Venema, J. Bacteriol. 152:166-174, 1982). These results indicate that the 75,000-dalton protein complex is composed of two different competence-specific polypeptides involved in both binding and entry of donor DNA. The possible roles of the two polypeptides in the transformation of B. subtilis are discussed.  相似文献   

9.
A 75,000-dalton protein complex purified from membranes of competent Bacillus subtilis cells was previously shown to be involved in both binding and entry of donor DNA during transformation. The complex, consisting of two polypeptides, a and b, in approximately equal amounts, showed strong DNA binding as well as nuclease activity (H. Smith, K. Wiersma, S. Bron, and G. Venema, J. Bacteriol. 156:101-108, 1983). In the present experiments, peptide mapping indicated that the two polypeptides are not related. Chromatography on benzoylated, naphthoylated DEAE-cellulose showed that polypeptide b generated single-stranded regions in double-stranded DNA. A considerable amount of the DNA was rendered acid soluble by polypeptide b. The nuclease activity of polypeptide b was reduced in the presence of polypeptide a. This resulted in an increased fraction of high-molecular-weight double-stranded DNA containing single-stranded regions. The acid-soluble DNA degradation products formed by polypeptide b consisted exclusively of oligonucleotides. In contrast to its nuclease activity, which was specifically directed toward double-stranded DNA, the DNA binding of the native 75,000-dalton complex to single-stranded DNA was at least as efficient as to double-stranded DNA.  相似文献   

10.
Cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex was studied by electron-paramagnetic-resonance (EPR) spectroscopy. The cytochrome amplified in Escherichia coli membranes by expression of the cloned cytochrome gene and in the succinate dehydrogenase complex immunoprecipitated from solubilized B. subtilis membranes, respectively, is shown to be low spin with a highly anisotropic (gmax approximately equal to 3.5) EPR signal. The amino acid residues most likely forming fifth and sixth axial ligands to heme in cytochrome b558 are discussed on the basis of the EPR signal and the recently determined gene sequence (K. Magnusson, M. Philips, J.R. Guest, and L. Rutberg, J. Bacteriol. 166:1067-1071, 1986) and in comparison with other b-type cytochromes.  相似文献   

11.
Succinate:menaquinone-7 oxidoreductase (complex II) of the Gram-positive bacterium Bacillus subtilis consists of equimolar amounts of three polypeptides; a 65-kDa FAD-containing polypeptide, a 28-kDa iron-sulfur cluster containing polypeptide, and a 23-kDa membrane-spanning cytochrome b558 polypeptide. The enzyme complex was overproduced 2-3-fold in membranes of B. subtilis cells containing the sdhCAB operon on a low copy number plasmid and was purified in the presence of detergent. The cytochrome b558 subunit alone was similarly overexpressed in a complex II deficient mutant and partially purified. Isolated complex II catalyzed the reduction of various quinones and also quinol oxidation. Both activities were efficiently albeit not completely blocked by 2-n-heptyl-4-hydroxyquinoline N-oxide. Chemical analysis demonstrated two protoheme IX per complex II. One heme component was found to have an Em,7.4 of +65 mV and an EPR gmax signal at 3.68, to be fully reducible by succinate, and showed a symmetrical alpha-band absorption peak at 555 nm at 77 K. The other heme component was found to have an Em,7.4 of -95 mV and an EPR gmax signal at 3.42, was not reducible by succinate under steady-state conditions, and showed in the reduced state an apparent split alpha-band absorption peak with maxima at 553 and 558 nm at 77 K. Potentiometric titrations of partially purified cytochrome b558 subunit demonstrated that the isolated cytochrome b558 also contains two hemes. Some of the properties, i.e., the alpha-band light absorption peak at 77 K, the line shapes of the EPR gmax signals, and reactivity with carbon monoxide were observed to be different in B. subtilis cytochrome b558 isolated and in complex II. This suggests that the bound flavoprotein and iron-sulfur protein subunits protect or affect the heme environment in the assembled complex.  相似文献   

12.
Choline acetyltransferase (ChAT; EC 2.3.1.6) was purified from the heads of Schistocerca gregaria to a final specific activity of 1.61 mumol acetylcholine (ACh) formed min-1 mg-1 protein. The molecular mass of the enzyme as determined by gel filtration is 66,800 daltons. The final enzyme preparation showed one major band at 65,000 daltons on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, which corresponds with the native molecular mass of the enzyme, a band at 56,000 daltons, and two bands at 40,500 and 38,000 daltons. Antibodies raised against ChAT in rabbit react only with the active band on native gel after Western blotting. They strongly react with the 65,000-dalton polypeptide band on Western blots of SDS gel separation of pure preparation of enzyme and with both the 65,000- and 56,000-dalton bands after SDS gel separation of crude extract.  相似文献   

13.
Succinate dehydrogenase (EC 1.3.99.1) of Micrococcus luteus was selectively precipitated from Triton X-100-solubilized membranes by using specific antiserum. The precipitated enzyme contained equimolar amounts of four polypeptides with apparent molecular weights of 72,000, 30,000, 17,000, and 15,000. The 72,000 polypeptide possessed a covalently bound flavin prosthetic group and appeared to be strongly antigenic as judged by immunoprinting experiments. Low-temperature absorption spectroscopy revealed the presence of cytochrome b556 in the antigen complex. By analogy with succinate dehydrogenase purified from other sources, the 72,000 and 30,000 polypeptides were considered to represent subunits of the succinate dehydrogenase enzyme, whereas one (or both) of the low-molecular-weight polypeptides was attributed to the apoprotein of the b-type cytochrome. A succinate dehydrogenase antigen cross-reacting with the M. luteus enzyme complex could be demonstrated in membranes of Micrococcus roseus, Micrococcus flavus, and Sarcina lutea, but not in the membranes isolated from a wide variety of other gram-positive and gram-negative bacteria.  相似文献   

14.
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = -224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

15.
A 19,000-dalton peptide (pI = 5.7) that is synthesized in increased amounts in vincristine-resistant Chinese hamster cells (DC-3FVCRd-5) has been identified by two-dimensional gel electrophoresis. Reduced amounts of the protein were present in a revertant line of DC-3FVCRd-5, and only trace amounts were detected in control DC-3F cells. A similar protein (Mr = 19,000; pI = 5.7) was also found in a vincristine-resistant mouse line. Two vincristine-resistant human neuroblastoma cell lines likewise contained elevated levels of a low molecular weight acidic protein. Increased biosynthesis of the 19,000-dalton polypeptide in DC-3FVCRd-5 cells coincides with the presence of a homogeneously staining region, HSR, on a metaphase chromosome.  相似文献   

16.
Role of protein subunits in Proteus rettgeri penicillin G acylase.   总被引:5,自引:1,他引:4       下载免费PDF全文
Penicillin G acylase from Proteus rettgeri is an 80,000- to 90,000-dalton enzyme composed of two nonidentical subunits. Both subunits were required for enzymatic activity. The 65,000-dalton beta subunit contained a phenylmethylsulfonyl fluoride-sensitive residue required for enzymatic activity, and the 24,500-dalton alpha subunit contained the domain that imparts specificity for the penicillin side chain.  相似文献   

17.
Complex III immunoprecipitated from yeast cells labeled in vivo with [35S]sulfate or [3H]leucine contained seven subunits with molecular weights ranging from 15,000 to 47,000 when analyzed by electrophoresis on polyacrylamide gels. The subunit composition of the immunoprecipitates was identical with that of the purified complex III isolated from bakers' yeast suggesting that the antiserum recognizes the holoenzyme assembled properly in the membrane (Sidhu, A., and Beattie, D.S. (1982) J. Biol. Chem. 257, 7879-7886). Kinetic studies using double-labeled yeast cells followed by immunoprecipitation of complex III indicated that the subunits of the complex are assembled into the holoenzyme at very different rates. Cytochromes b and c1 and the 15,000-dalton subunit were the first polypeptides to be assembled into the complex with a half-time of labeling of 2.0-2.4 min. Core protein I and the iron-sulfur protein were inserted more slowly into the complex with a half-time of labeling of 4.6 and 5.3 min, respectively. Calculations of precursor pool sizes of the subunits indicated that for both core protein I and the iron-sulfur protein, there are large pools of precursors. The iron-sulfur protein was synthesized in vivo as a larger precursor polypeptide of molecular mass 28,000 Da. The precursor was subsequently cleaved, in a process requiring an energized mitochondrial inner membrane, into an intermediate form 1,500 Da larger than the mature subunit. The conversion of the intermediate to the mature form occurred in the inner mitochondrial membrane.  相似文献   

18.
19.
20.
A simple procedure is described for the purification of the pyruvate dehydrogenase complex and dihydrolipoamide dehydrogenase from Bacillus subtilis. The method is rapid and applicable to small quantities of bacterial cells. The purified pyruvate dehydrogenase complex (s0(20),w = 73S) comprises multiple copies of four different types of polypeptide chain, with apparent Mr values of 59 500, 55 000, 42 500 and 36 000: these were identified as the polypeptide chains of the lipoate acetyltransferase (E2), dihydrolipoamide dehydrogenase (E3) and the two types of subunit of the pyruvate decarboxylase (E1) components respectively. Pyruvate dehydrogenase complexes were also purified from two ace (acetate-requiring) mutants of B. subtilis. That from mutant 61142 was found to be inactive, owing to an inactive E1 component, which was bound less tightly than wild-type E1 and was gradually lost from the E2E3 subcomplex during purification. Subunit-exchange experiments demonstrated that the E2E3 subcomplex retained full enzymic activity, suggesting that the lesion was limited to the E1 component. Mutant 61141R elaborated a functional pyruvate dehydrogenase complex, but this also contained a defective E1 component, the Km for pyruvate being raised from 0.4 mM to 4.3 mM. The E1 component rapidly dissociated from the E2E3 subcomplex at low temperature (0-4 degrees C), leaving an E2E3 subcomplex which by subunit-exchange experiments was judged to retain full enzymic activity. These ace mutants provide interesting opportunities to analyse defects in the self-assembly and catalytic activity of the pyruvate dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号