首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis is a natural form of cell death involved in many physiological changes in the cell. Defects in the process of apoptosis can lead to serious diseases. During some apoptotic pathways, proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) are released from the mitochondria and they translocate into the cell nuclei, where they probably participate in chromatin degradation together with other nuclear proteins. Exact mechanism of EndoG activity in cell nucleus is still unknown. Some interacting partners like flap endonuclease 1, DNase I, and exonuclease III were already suggested, but also other interacting partners were proposed. We conducted a living-cell confocal fluorescence microscopy followed by an image analysis of fluorescence resonance energy transfer to analyze the possibility of protein interactions of EndoG with histone H2B and human DNA topoisomerase II alpha (TOPO2a). Our results show that EndoG interacts with both these proteins during apoptotic cell death. Therefore, we can conclude that EndoG and TOPO2a may actively participate in apoptotic chromatin degradation. The possible existence of a degradation complex consisting of EndoG and TOPO2a and possibly other proteins like AIF and cyclophilin A have yet to be investigated.  相似文献   

2.
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks.  相似文献   

3.
The relationship between cell cycling and apoptosis/programmed cell death has been perceived as either checkpoint arrests or mitotic aberration where common pathways between mitosis and apoptosis seem suggested. We show here evidence implicating both perceptions of cell cycle involvement. The process was initiated by hydroxyl free radicals (OH*) generated intracellularly from internalized vanadyl(4). Intranuclear sequestration of vanadyl(4) was verified by nuclear microscopy. Resultant high oxidative reactivity in the nucleus was shown by the redox indicator methylene blue, suggesting direct oxidative damage to genomic DNA. Oxidative stress was further enhanced by depletion of glutathione which is the main cellular reducing agent. Genomic degradation and fragmentation was confirmed by flow cytometric evaluation of terminal deoxynucleotidyl transferase (TdT)-mediated 3'OH end-labelling (TUNEL) of DNA nicks, and cell cycle DNA profiling demonstrating sub-G1 (sub-2N) accumulation. With DNA degradation, there was a G2M transient with hyperdiploid right-shifting, consistent with G2 arrest. G2 arrest was subsequently 'released' with abolition of G2M and all other cell cycle phases except for a solitary sub-G1 (apoptotic) peak. The cytological profile of this 'release' phenomenon was initially marked by the appearance of clusters of mitotic and apoptotic cells. At later stages, the cell population was composed exclusively of nuclear ghosts, apoptotic cells, mitotic cells, and mitotic cells with both chromosomes and apoptotic condensations. Concurrent and conjoint expression of cell death and cell division as the exclusive process of an entire cell population refuted the notion of mutual exclusivity between life and death. Zn2+, an endonuclease inhibitor, abolished all observed cytological and DNA profile changes.  相似文献   

4.
Induced thermotolerance to apoptosis in a human T lymphocyte cell line.   总被引:15,自引:0,他引:15  
A brief exposure to elevated temperatures elicits, in all organisms, a transient state of increased heat resistance known as thermotolerance. The mechanism for this thermotolerant state is unknown primarily because it is not clear how mild hyperthermia leads to cell death. The realization that cell death can occur through an active process of self destruction, known as apoptosis, led us to consider whether thermotolerance provides protection against this mode of cell death. Apoptosis is a common and essential form of cell death that occurs under both physiological and pathological conditions. This mode of cell death requires the active participation of the dying cell and in this way differs mechanistically from the alternative mode of cell death, necrosis. Here we show that mild hyperthermia induces apoptosis in a human leukemic T cell line. This is evidenced by chromatin condensation, nuclear fragmentation and the cleavage of DNA into oligonucleosome size units. DNA fragmentation is a biochemical hallmark of apoptosis and requires the activation of an endogenous endonuclease. The extent of DNA fragmentation was proportional to the severity of heat stress for cells heated at 43 degrees C from 30 to 90 minutes. A brief conditioning heat treatment induced a resistance to apoptosis. This was evident as a resistance to DNA fragmentation and a reduction in the number of apoptotic cells after a heat challenge. Resistance to DNA fragmentation developed during a recovery period at 37 degrees C and was correlated with enhanced heat shock protein (hsp) synthesis. This heat-induced resistance to apoptosis suggests that thermotolerant cells have gained the capacity to prevent the onset of this pathway of self-destruction. An examination of this process in heated cells should provide new insights into the molecular basis of cellular thermotolerance.  相似文献   

5.
Apoptosis is characterized by various cell morphological and biochemical features, one of which is the internucleosomal degradation of genomic DNA. The role of the human chromatin-bound Ca(2+)- and Mg(2+)-dependent endonuclease (CME) DNAS1L3 and its inhibition by poly(ADP-ribosyl)ation in the DNA degradation that accompanies apoptosis was investigated. The nuclear localization of this endonuclease is the unique feature that distinguishes it from other suggested apoptotic nucleases. Purified recombinant DNAS1L3 was shown to cleave nuclear DNA into both high molecular weight and oligonucleosomal fragments in vitro. Furthermore, exposure of mouse skin fibroblasts expressing DNAS1L3 to inducers of apoptosis resulted in oligonucleosomal DNA fragmentation, an effect not observed in cells not expressing this CME, as well as in a decrease in cell viability greater than that apparent in the control cells. Recombinant DNAS1L3 was modified by recombinant human poly(ADP-ribose) polymerase (PARP) in vitro, resulting in a loss of nuclease activity. The DNAS1L3 protein also underwent poly(ADP-ribosyl)ation in transfected mouse skin fibroblasts in response to inducers of apoptosis. The cleavage and inactivation of PARP by a caspase-3-like enzyme late in apoptosis were associated with a decrease in the extent of DNAS1L3 poly(ADP-ribosyl)ation, which likely releases DNAS1L3 from inhibition and allows it to catalyze the degradation of genomic DNA.  相似文献   

6.
Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation.  相似文献   

7.
Cell death by apoptosis occurs in a wide range of physiological events including repertoire selection of lymphocytes and during immune responses in vivo. A hallmark of apoptosis is the internucleosomal DNA degradation for which a Ca2+,Mg(2+)-dependent endonuclease has been postulated. This nuclease activity was extracted from both rat thymocyte and lymph node cell nuclei. When incubated with nuclei harbouring only limited amounts of endogenous nuclease activity, the ladder pattern of DNA fragments characteristic of apoptosis was induced. This extractable nucleolytic activity was immunoprecipitated with antibodies specific for rat deoxyribonuclease I (DNase I) and was inhibited by actin in complex with gelsolin segment 1, strongly pointing to the presence of a DNase I-type enzyme in the nuclear extracts. COS cells transiently transfected with the cDNA of rat parotid DNase I expressed the enzyme, and their nuclei were able to degrade their DNA into oligosome-sized fragments. PCR analysis of mRNA isolated from thymus, lymph node cells and kidney yielded a product identical in size to that from rat parotid DNase I. Immunohistochemical staining with antibodies to rat DNase I confirmed the presence of DNase I antigen in thymocytes and lymph node cells. The tissue distribution of DNase I is thus extended to tissues with no digestive function and to cells which are known to be susceptible to apoptosis. We propose that during apoptosis, an endonuclease indistinguishable from DNase I gains access to the nucleus due to the breakdown of the ER and the nuclear membrane.  相似文献   

8.
Apoptotic DNA fragmentation   总被引:28,自引:0,他引:28  
Degradation of nuclear DNA into nucleosomal units is one of the hallmarks of apoptotic cell death. It occurs in response to various apoptotic stimuli in a wide variety of cell types. Molecular characterization of this process identified a specific DNase (CAD, caspase-activated DNase) that cleaves chromosomal DNA in a caspase-dependent manner. CAD is synthesized with the help of ICAD (inhibitor of CAD), which works as a specific chaperone for CAD and is found complexed with ICAD in proliferating cells. When cells are induced to undergo apoptosis, caspases-in particular caspase 3-cleave ICAD to dissociate the CAD:ICAD complex, allowing CAD to cleave chromosomal DNA. Cells that lack ICAD or that express caspase-resistant mutant ICAD thus do not show DNA fragmentation during apoptosis, although they do exhibit some other features of apoptosis and die. In this review, the molecular mechanism of and the physiological roles played by apoptotic DNA fragmentation will be discussed.  相似文献   

9.
Early stages of p53-induced apoptosis are reversible   总被引:2,自引:0,他引:2  
Apoptosis is a type of physiological cell death that occurs during development, normal tissue homeostasis, or as a result of different cellular insults. The phenotype of an apoptotic cell is relatively consistent in most cases of apoptosis and involves at least changes in the cell membrane, proteolysis of cytoplasmic and nuclear proteins, and eventual destruction of nuclear DNA. Our laboratory is interested in the reversibility of apoptosis. We have initial evidence that DNA repair is activated early in p53-induced apoptosis and may be involved in its reversibility. The present work further strengthens our proposition that p53-induced apoptosis is reversible. We show that p53 activation induces phosphatidylserine (PS) externalization early in apoptosis, and that these early apoptotic cells with externalized PS can be rescued and proliferate if the apoptotic stimulus is removed. In addition, we show that unscheduled DNA synthesis occurs in early apoptotic cells, and that if DNA repair is inhibited by aphidicolin, apoptosis is accelerated. These results confirm that early p53-induced apoptotic cells can be rescued from the apoptotic program, and that DNA repair can modulate that cell death process.  相似文献   

10.
ErbB3-binding protein (Ebp1) promotes cell survival by preventing apoptotic DNA fragmentation through a complex with active nuclear Akt. Ebp1 phosphorylation by protein kinase C (PKC)-delta mediates its binding to nuclear Akt. In this study, we show that Ebp1 itself acts as a substrate of active caspase 3 during the programmed cell death. PKC-delta phosphorylation on Ebp1 protects it from apoptotic degradation initiated in cell-free apoptotic solution. Moreover, Ebp1 is evidently cleaved in PKC-delta-deficient cells but not in wild-type cells. Ebp1 translated from first ATG is resistant to apoptotic cleavage; by contrast, Ebp1 from second and third ATG demonstrates robust degradation, and PKC phosphorylation on S360 suppresses its cleavage by active caspase 3. Ebp1 can be digested at both D53 and D196 sites, but cleavage at D196 appears to be a prerequisite for its further degradation at D53 site. Compared with wild-type Ebp1, D196A mutant markedly protects cells from apoptosis. Thus, PKC-delta antagonizes apoptosis through phosphorylating Ebp1 and protects it from apoptotic degradation.  相似文献   

11.
Multiple physiological and pharmacological stimuli induce cells to die by apoptosis. In many cases, this apoptosis is inhibited by BCL-2, suggesting the involvement of a common regulatory pathway. One frequent characteristic of apoptosis is the digestion of DNA into oligonucleosome-length fragments. Intracellular acidification and increased intracellular calcium have been variously implicated in activating the endonuclease responsible for this DNA digestion. To explore the involvement of these potential signals in endonuclease activation, we have analyzed three Chinese hamster ovary cell lines: a parental line, one expressing a cDNA encoding BCL-2, and the third expressing the BCL-2 family member MCL-1. Apoptosis was induced with the protein kinase inhibitor staurosporine and intracellular pH and calcium were measured by flow cytometry. We found that both MCL-1 and BCL-2 inhibited DNA digestion compared to the parent cell line, although BCL-2 was more potent in this regard. Concurrent with DNA digestion, we observed intracellular acidification; MCL-1 and BCL-2 inhibited intracellular acidification to an extent commensurate with their ability to inhibit DNA digestion. In contrast, staurosporine caused a dose-dependent increase in intracellular calcium in all three cell lines, demonstrating that intracellular free calcium levels did not correlate with the induction of apoptosis. These results suggest that BCL-2 and MCL-1 may regulate a pathway for intracellular pH homeostasis during apoptotic cell death.  相似文献   

12.
FANCD2, a key factor in the FANC-BRCA1 pathway is monoubiquitinated and targeted to discrete nuclear foci following DNA damage. Since monoubiquitination of FANCD2 is a crucial indicator for cellular response to DNA damage, we monitored the fate of FANCD2 and its monoubiquitination following DNA damage. Disappearance of FANCD2 protein was induced following DNA damage in a dose-dependent manner, which correlated with degradation of BRCA1 and poly-ADP ribose polymerase (PARP), known targets for caspase-mediated apoptosis. Disappearance of FANCD2 was not affected by a proteasome inhibitor but was blocked by a caspase inhibitor. DNA damage-induced disappearance of FANCD2 was also observed in cells lacking FANCA, suggesting that disappearance of FANCD2 does not depend on FANC-BRCA1 pathway and FANCD2 monoubiquitination. In keeping with this, cells treated with TNF-α, an apoptotic stimulus without causing any DNA damage, also induced disappearance of FANCD2 without monoubiquitination. Together, our data suggest that FANCD2 is a target for caspase-mediated apoptotic pathway, which may be an early indicator for apoptotic cell death.  相似文献   

13.
Ito J  Fukuda H 《The Plant cell》2002,14(12):3201-3211
Tracheary elements (TEs) have a unique cell death program in which the rapid collapse of the vacuole triggers the beginning of nuclear degradation. Although various nucleases are known to function in nuclear DNA degradation in animal apoptosis, it is unclear what hydrolase is involved in nuclear degradation in plants. In this study, we demonstrated that an S1-type nuclease, Zinnia endonuclease 1 (ZEN1), functions directly in nuclear DNA degradation during programmed cell death (PCD) of TEs. In-gel DNase assay demonstrated the presence of a 24-kD Ca(2+)/Mg(2+)-dependent nuclease and a 40-kD Zn(2+)-dependent nuclease as well as ZEN1 in 60-h-cultured cells that included differentiating TEs. Such cell extracts possessed the ability to degrade the nuclear DNA isolated from Zinnia elegans cells in the presence of Zn(2+), and its activity was suppressed by an anti-ZEN1 antibody, indicating that ZEN1 is a central DNase responsible for nuclear DNA degradation. The introduction of the antisense ZEN1 gene into Zinnia cells cultured for 40 h specifically suppressed the degradation of nuclear DNA in TEs undergoing PCD but did not affect vacuole collapse. Based on these results, a common mechanism between animal and plant PCD is discussed.  相似文献   

14.
Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.  相似文献   

15.
Apoptosis, a physiological form of cell death, is characterized by the activation of a program that kills cells and recycles their constituents. We have used thymoma cell lines to examine the role of Bcl-2 and caspases in ribosomal destruction during apoptosis. Glucocorticoid- and calcium ionophore (A23187)-induced apoptosis of S49 Neo cells resulted in both 28S rRNA and DNA degradation. Interestingly, anisomycin, a potent protein synthesis inhibitor, also induced 28S rRNA and DNA fragmentation suggesting that the responsible nucleases are present in the viable cells and become activated during apoptosis. The anti-apoptotic protein, Bcl-2, inhibited both glucocorticoid- and anisomycin-induced DNA and 28S rRNA degradation but could not protect against A23187-induced nucleic acid degradation. We next examined the role of caspase activation in the generation of 28S rRNA degradation through the use of ZVAD, a general caspase inhibitor. Under conditions where ZVAD substantially decreased 28S rRNA degradation induced by glucocorticoid or anisomycin, no decrease was observed when A23187 was used to induce apoptosis. Surprisingly, RNA degradation, like DNA degradation, occurs exclusively in shrunken lymphocytes but not those with normal cell volume despite equivalent exposure of the cells to the apoptotic signals. Together, these findings indicate the ribosome is a specific target for death effectors during apoptosis and that a caspase/Bcl-2-independent pathway exists to activate its destruction.  相似文献   

16.
维甲酸诱导的人大肠癌细胞凋亡   总被引:10,自引:0,他引:10  
本研究应用光镜、电镜技术、DNA凝胶电泳、流式细胞术及末端脱氧核苷酰转移酶原位标记(TUNEL法),观察全反式维甲酸ATRA诱导的人大肠癌CCL229细胞凋亡特征。RA诱导CCL229细胞凋亡,光、电镜下观察到凋亡小体形成等典型的形态学改变,琼脂糖凝胶电泳上呈现特征性的DNA ladder,DNA直方图上显示亚二倍体峰。10-8mol/L-105mol/L范围内,RA诱导CCL229细胞凋亡表现出时间和剂量依赖性。  相似文献   

17.
The physiological and pathological importance of cell death by apoptosis has recently been recognized. One of the hallmarks of apoptosis is the enzymatic cleavage of genomic DNA into nucleosomal oligomers. The identification of an endonuclease responsible for apoptosis might help to explain how this cell suicide is regulated and why DNA is cleaved. Here, we found that γ type of DNase was retained in apoptotic rat thymocyte nuclei. Homogeneously purified DNase γ (Mr = 33 kDa) from the apoptotic nuclei was revealed to be a Ca2+/Mg2+-dependent endonuclease and inhibited by Zn2+. This enzyme cleaved chromosomal DNA with 3′-hydroxyl (OH) and 5′-phosphoryl (P) ends. The cleavage ends and its divalent cation dependencies match those observed in apoptotic thymocytes induced by X-irradiation or glucocorticoid treatment, indicating that this endonuclease is a central component of the thymic apoptosis machinery.  相似文献   

18.
19.
Adenosine, as a ubiquitous metabolite, mediates many physiological functions via activation of plasma membrane receptors. Mechanisms of most of its physiological roles have been studied extensively, but research on adenosine-induced apoptosis (AIA) has only started recently. In this study we demonstrate that adenosine dose-dependently triggered apoptosis of cultured baby hamster kidney (BHK) cells. Adenosine-induced apoptotic cell death was characterized by DNA laddering, changes in nuclear chromatin morphology and phosphatidylserine staining. Apoptosis was also quantified by flow cytometry. Results suggest the involvement of adenosine A1 and A3 receptors as well as equilibrative nucleoside transporters in apoptosis induced by adenosine. These results indicate a receptor-transporter co-signaling mechanism in AIA in BHK cells. The involvement of A1 and A3 receptors also implies a possible apoptotic pathway mediated by G protein-coupled receptors.  相似文献   

20.
乙烯诱导胡萝卜原生质体凋亡   总被引:16,自引:0,他引:16  
乙烯是一种参与多种重要生理学过程的植物激素。用乙烯利在密闭条件下处理胡萝卜(DaucuscarotaL.)原生质体(在pH>4.1时释放乙烯),发现随着乙烯利浓度增加,细胞死亡率逐渐增高。经乙烯利处理的胡萝卜原生质体出现核内染色质固缩,形成凋亡小体等典型的细胞凋亡的形态学特征。用中性法彗星电泳观测到彗星状的核DNA片段的迁移。DNA电泳分析观察到细胞凋亡时产生的典型的核小体间DNA断裂所形成的梯状条带。结果表明,乙烯能诱导悬浮培养的胡萝卜原生质体凋亡  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号