首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Summary VEGF (vascular endothelial growth factor) overproduction has been identified as a major factor underlying pathological angiogenesis in vivo, including such conditions as psoriasis, macular degeneration, and tumor proliferation. Endothelial cell tyrosine kinase receptors, KDR and Flt-1, have been implicated in VEGF responses including cellular migration, proliferation, and modulation of vascular permeability. Therefore, agents that limit VEGF-cellular interaction are likely therapeutic candidates for VEGF-mediated disease states (particularly agents blocking activity of VEGF165, the most frequently occurring VEGF isoform). To that end, a nuclease-resistant, VEGF165-specific aptamer NX1838 (2′-fluoropyrimidine, RNA-based oligonucleotide/40-kDa-PEG) was developed. We have assessed NX1838 inhibition of a variety of cellular events associated with VEGF, including cellular binding, signal transduction, calcium mobilization, and induction of cellular proliferation. Our data indicate that NX1838 inhibits binding of VEGF to HUVECs (human umbilical vein endothelial cells) and dose-dependently prevents VEGF-mediated phosphorylation of KDR and PLCγ, calcium flux, and ultimately VEGF-induced cell proliferation. NX1838-inhibition of VEGF-mediated cellular events was comparable to that observed with anti-VEGF monoclonal antibody, but was ineffective as an inhibitor of VEGF121-induced HUVEC proliferation. These findings, coupled with nuclease stability of the molecule, suggest that NX1838 may provide therapeutic utility in vivo.  相似文献   

2.
Angiogenesis is important in tumor development. Vascular endothelial growth factor (VEGF) is involved in this process. In this report, we constructed a recombinant protein (called FK) by fusing the second immunoglobulin-like (Ig-like) domain of a human fms-like tyrosine kinase (Flt-1) with the third Ig-like domain of human kinase insert domain-containing receptor (KDR). FK bound to VEGF165 in a dose-dependent manner with a disocciation constant (Kd) of 2.7 pM. In addition, FK specifically inhibited the proliferation of human microvascular endothelial cell (HMEC) and human umbilical vein endothelial Cell (HUVEC) stimulated by VEGF165. Subsequent studies also demonstrate that FK efficaciously suppresses growth of a variety of tumors, which could make FK a potential drug candidate in anti-tumor therapy.  相似文献   

3.
T Davis-Smyth  H Chen  J Park  L G Presta    N Ferrara 《The EMBO journal》1996,15(18):4919-4927
Vascular endothelial growth factor (VEGF) is an angiogenic inducer that mediates its effects through two high affinity receptor tyrosine kinases, Flt-1 and KDR. Flt-1 is required for endothelial cell morphogenesis whereas KDR is involved primarily in mitogenesis. Flt-1 has an alternative ligand, placenta growth factor (PlGF). Both Flt-1 and KDR have seven immunoglobulin (Ig)-like domains in the extracellular domain. The significance and function of these domains for ligand binding and receptor activation are unknown. Here we show that deletion of the second domain of Flt-1 completely abolishes the binding of VEGF. Introduction of the second domain of KDR into an Flt-1 mutant lacking the homologous domain restored VEGF binding. However, the ligand specificity was characteristic of the KDR receptor. We then created chimeric receptors where the first three or just the second Ig-like domains of Flt-1 replaced the corresponding domains in Flt-4, a receptor that does not bind VEGF, and analyzed their ability to bind VEGF. Both swaps conferred upon Flt-4 the ability to bind VEGF with an affinity nearly identical to that of wild-type Flt-1. Furthermore, transfected cells expressing these chimeric Flt-4 receptors exhibited increased DNA synthesis in response to VEGF or PlGF. These results demonstrate that a single Ig-like domain is the major determinant for VEGF-PlGF interaction and that binding to this domain may initiate a signal transduction cascade.  相似文献   

4.
The accumulation of radiolabeled arachidonicacid (AA), immunoblot analysis of subcellular fractions, andimmunofluorescence tagging of proteins in intact cells were used toexamine the coupling of ANG II receptors with the activity and locationof a cytosolic phospholipase A2(cPLA2) in vascular smoothmuscle cells (VSMC). ANG II induced the accumulation of AA, whichpeaked by 10 min and was downregulated by 20 min. A large proportion ofthe AA released in response to ANG II was due to the activation of a Ca2+-dependent lipase coupled toan AT1 receptor. However,regulation of Ca2+ availabilityfailed to completely block AA release, and a small but significantreduction in ANG II-mediated AA release was observed in the presence ofan AT2 antagonist. These findings,coupled with a 25% reduction in the ANG II-induced AA release by aninhibitor specific for aCa2+-independentPLA2, are consistent with thepresence and activation of aCa2+-independentPLA2. In contrast, immunoblotanalysis and immunofluorescence detection showed that the ANGII-mediated translocation of cPLA2 to a membrane fraction was exclusivelyAT1 dependent and regulated byCa2+ availability. Furthermore,the nucleus was the membrane target. We conclude that ANG II regulatesthe Ca2+-dependent activation andtranslocation of cPLA2 through anAT1 receptor and that this eventis targeted at the nucleus in VSMC.

  相似文献   

5.
Angiogenesis is very important for vascularized tissue engineering. In this study, we found that a two-dimensional co-culture of human bone marrow stromal cell (HBMSC) and human umbical vein endothelial cell (HUVEC) is able to stimulate the migration of co-cultured HUVEC and induce self-assembled network formation. During this process, expression of vascular endothelial growth factor (VEGF165) was upregulated in co-cultured HBMSC. Meanwhile, VEGF165-receptor2 (KDR) and urokinase-type plasminogen activator (uPA) were upregulated in co-cultured HUVEC. Functional studies show that neutralization of VEGF165 blocked the migration and the rearrangement of the cells and downregulated the expression of uPA and its receptor. Blocking of vascular endothelial-cadherin (VE-cad) did not affect the migration of co-cultured HUVEC but suppressed the self-assembled network formation. In conclusion, co-cultures upregulated the expression of VEGF165 in co-cultured HBMSC; VEGF165 then activated uPA in co-cultured HUVEC, which might be responsible for initiating the migration and the self-assembled network formation with the participation of VE-cad. All of these results indicated that only the direct contact of HBMSC and HUVEC and their respective dialogue are sufficient to stimulate secretion of soluble factors and to activate molecules that are critical for self-assembled network formation which show a great application potential for vascularization in tissue engineering.  相似文献   

6.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) functions by activating two receptor-tyrosine kinases, Flt-1 (VEGF receptor (VEGFR)-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. KDR is responsible for VPF/VEGF-stimulated endothelial cell proliferation and migration, whereas Flt-1 down-modulates KDR-mediated endothelial cell proliferation. Our most recent works show that pertussis toxin-sensitive G proteins and Gbetagamma subunits are required for Flt-1-mediated down-regulation of human umbilical vein endothelial cell (HUVEC) proliferation and that Gq/11 proteins are required for KDR-mediated RhoA activation and HUVEC migration. In this study, we demonstrate that Gq/11 proteins are also required for VPF/VEGF-stimulated HUVEC proliferation. Our results further indicate that Gq/11 proteins specifically mediate KDR signaling such as intracellular Ca2+ mobilization rather than Flt-1-induced CDC42 activation and that a Gq/11 antisense oligonucleotide completely inhibits MAPK phosphorylation induced by KDR but has no effect on Flt-1-induced MAPK activation. More importantly, we demonstrate that Gq/11 proteins interact with KDR in vivo, and the interaction of Gq/11 proteins with KDR does not require KDR tyrosine phosphorylation. Surprisingly, the Gq/11 antisense oligonucleotide completely inhibits VPF/VEGF-stimulated KDR phosphorylation. Expression of a constitutively active mutant of G11 but not Gq can cause phosphorylation of KDR and MAPK. In addition, a Gbetagamma minigene, hbetaARK1(495), inhibits VPF/VEGF-stimulated HUVEC proliferation, MAPK phosphorylation, and intracellular Ca2+ mobilization but has no effect on KDR phosphorylation. Taken together, this study demonstrates that Gq/11 proteins mediate KDR tyrosine phosphorylation and KDR-mediated HUVEC proliferation through interaction with KDR.  相似文献   

7.
The effects of epidermal growth factor(EGF) on intracellular calcium ([Ca2+]i)responses to the muscarinic agonist carbachol were studied in a humansalivary cell line (HSY). Carbachol (104 M)-stimulated[Ca2+]i mobilization was inhibited by 40%after 48-h treatment with 5 × 1010 M EGF. EGF alsoreduced carbachol-induced [Ca2+]i inCa2+-free medium and Ca2+ influx followingrepletion of extracellular Ca2+. UnderCa2+-free conditions, thapsigargin, an inhibitor ofCa2+ uptake to internal stores, induced similar[Ca2+]i signals in control and EGF-treatedcells, indicating that internal Ca2+ stores were unaffectedby EGF; however, in cells exposed to thapsigargin, Ca2+influx following Ca2+ repletion was reduced by EGF.Muscarinic receptor density, assessed by binding of the muscarinicreceptor antagonistL-[benzilic-4,4'-3HCN]quinuclidinyl benzilate([3H]QNB), was decreased by 20% after EGF treatment.Inhibition of the carbachol response by EGF was not altered by phorbolester-induced downregulation of protein kinase C (PKC) but was enhancedupon PKC activation by a diacylglycerol analog. Phosphorylation of mitogen-activated protein kinase (MAP kinase) and inhibition of thecarbachol response by EGF were both blocked by the MAP kinase pathwayinhibitor PD-98059. The results suggest that EGF decreases carbachol-induced Ca2+ release from internal stores andalso exerts a direct inhibitory action on Ca2+ influx. Adecline in muscarinic receptor density may contribute to EGF inhibitionof carbachol responsiveness. The inhibitory effect of EGF is mediatedby the MAP kinase pathway and is potentiated by a distinct modulatorycascade involving activation of PKC. EGF may play a physiological rolein regulating muscarinic receptor-stimulated salivary secretion.

  相似文献   

8.
The intent of this work was to evaluate the role of cAMP inregulation of ciliary activity in frog mucociliary epithelium and toexamine the possibility of cross talk between the cAMP- andCa2+-dependent pathways in thatregulation. Forskolin and dibutyryl cAMP induced strong transientintracellular Ca2+ concentration([Ca2+]i)elevation and strong ciliary beat frequency enhancement with prolongedstabilization at an elevated plateau. The response was not affected byreduction of extracellular Ca2+concentration. The elevation in[Ca2+]iwas canceled by pretreatment with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, thapsigargin, and a phospholipase C inhibitor, U-73122. Underthose experimental conditions, forskolin raised the beat frequency to amoderately elevated plateau, whereas the initial strong rise infrequency was completely abolished. All effects were canceled by H-89,a selective protein kinase A (PKA) inhibitor. The results suggest adual role for PKA in ciliary regulation. PKA releasesCa2+ from intracellular stores,strongly activating ciliary beating, and, concurrently, producesmoderate prolonged enhancement of the beat frequency by aCa2+-independent mechanism.

  相似文献   

9.
In human osteoblast-like MG-63cells, extracellular ATP increased [3H]thymidineincorporation and cell proliferation and synergistically enhancedplatelet-derived growth factor- or insulin-like growth factor I-induced[3H]thymidine incorporation. ATP-induced[3H]thymidine incorporation was mimicked by thenonhydrolyzable ATP analogs adenosine5'-O-(3-thiotriphosphate) and adenosine 5'-adenylylimidodiphosphate and was inhibited by the P2purinoceptor antagonist suramin, suggesting involvement of P2purinoceptors. The P2Y receptor agonist UTP and UDP and a P2Y receptorantagonist reactive blue 2 did not affect [3H]thymidineincorporation, whereas the P2X receptor antagonist pyridoxalphosphate-6-azophenyl-2',4-disulfonic acid inhibited ATP-induced[3H]thymidine incorporation, suggesting that ATP-inducedDNA synthesis was mediated by P2X receptors. RT-PCR analysis revealedthat MG-63 cells expressed P2X4, P2X5,P2X6, and P2X7, but not P2X1,P2X2, and P2X3, receptors. In fura 2-loadedcells, not only ATP, but also UTP, increased intracellularCa2+ concentration, and inhibitors for severalCa2+-activated protein kinases had no effect on ATP-inducedDNA synthesis, suggesting that an increase in intracellularCa2+ concentration is not indispensable for ATP-induced DNAsynthesis. ATP increased mitogen-activated protein kinase activity in aCa2+-independent manner and synergistically enhancedplatelet-derived growth factor- or insulin-like growth factor I-inducedkinase activity. Furthermore, the mitogen-activated protein kinasekinase inhibitor PD-98059 totally abolished ATP-induced DNA synthesis. We conclude that ATP increases DNA synthesis and enhances the proliferative effects of growth factors through P2X receptors byactivating a mitogen-activated protein kinase pathway.

  相似文献   

10.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

11.
ATP induces dephosphorylation of myosin light chain in endothelial cells   总被引:1,自引:0,他引:1  
In cultured porcine aortic endothelial monolayers, theeffect of ATP on myosin light chain (MLC) phosphorylation, whichcontrols the endothelial contractile machinery, was studied. ATP (10 µM) reduced MLC phosphorylation but increased cytosolicCa2+ concentration ([Ca2+]i).Inhibition of the ATP-evoked [Ca2+]i rise byxestospongin C (10 µM), an inhibitor of the inositol trisphosphate-dependent Ca2+ release from endoplasmicreticulum, did not affect the ATP-induced dephosphorylation of MLC. MLCdephosphorylation was prevented in the presence of calyculin A (10 nM),an inhibitor of protein phosphatases PP-1 and PP-2A. Thus ATP activatesMLC dephosphorylation in a Ca2+-independent manner. In thepresence of calyculin A, MLC phosphorylation was incremented afteraddition of ATP, an effect that could be abolished when cellswere loaded with the Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester (10 µM). Thus ATP also activates aCa2+-dependent kinase acting on MLC. In summary, ATPsimultaneously stimulates a functional antagonism toward bothphosphorylation and dephosphorylation of MLC in which thedephosphorylation prevails. In endothelial cells, ATP is the firstphysiological mediator identified to activate MLC dephosphorylation bya Ca2+-independent mechanism.

  相似文献   

12.
Mn2+ was required for the electron donating reaction from H2O2,but not for that from diphenylcarbazide (DPC), in the PS IIreaction center complex which was prepared from spinach chloroplastsby Triton X-100 extraction. The reaction center complex showeda high activity of 2,6-dichloroindophenol (DCIP) photoreductionin the presence of DPC, but a low activity with H2O2. The H2O2-supportedDCIP photoreduction was suppressed by EDTA and enhanced by asmall amount of Mn2+. Ca2+ and Mg2+ could not replace Mn2+.The activation by Mn2+ and its binding showed two binding sitesof Mn2+ in the reaction center complex, with high (1.5?107 M–1)and low (1 ? 106 M–1) binding constants. (Received November 8, 1986; Accepted April 10, 1987)  相似文献   

13.
The rat dorsal root ganglion (DRG) Ca2+-sensing receptor (CaR) was stably expressed in-frame as an enhanced green fluorescent protein (EGFP) fusion protein in human embryonic kidney (HEK)293 cells, and is functionally linked to changes in intracellular Ca2+ concentration ([Ca2+]i). RT-PCR analysis indicated the presence of the message for the DRG CaR cDNA. Western blot analysis of membrane proteins showed a doublet of 168–175 and 185 kDa, consistent with immature and mature forms of the CaR.EGFP fusion protein, respectively. Increasing extracellular [Ca2+] ([Ca2+]e) from 0.5 to 1 mM resulted in increases in [Ca2+]i levels, which were blocked by 30 µM 2-aminoethyldiphenyl borate. [Ca2+]e-response studies indicate a Ca2+ sensitivity with an EC50 of 1.75 ± 0.10 mM. NPS R-467 and Gd3+ activated the CaR. When [Ca2+]e was successively raised from 0.25 to 4 mM, peak [Ca2+]i, attained with 0.5 mM, was reduced by 50%. Similar reductions were observed with repeated applications of 10 mM Ca2+, 1 and 10 µM NPS R-467, or 50 and 100 µM Gd3+, indicating desensitization of the response. Furthermore, Ca2+ mobilization increased phosphorylated protein kinase C (PKC) levels in the cells. However, the PKC activator, phorbol myristate acetate did not inhibit CaR-mediated Ca2+ signaling. Rather, a spectrum of PKC inhibitors partially reduced peak responses to Cae2+. Treatment of cells with 100 nM PMA for 24 h, to downregulate PKC, reduced [Ca2+]i transients by 49.9 ± 5.2% (at 1 mM Ca2+) and 40.5 ± 6.5% (at 2 mM Ca2+), compared with controls. The findings suggest involvement of PKC in the pathway for Ca2+ mobilization following CaR activation. desensitization; protein kinase C  相似文献   

14.
Vascular endothelial cell growth factor-A(165) (VEGF-A(165)) is critical for angiogenesis. Although protein kinase C-mediated protein kinase D(PKD)activation was implicated in the response, the detailed mechanism remains unclear. In this study, we found that VEGF-A(165)-stimulated tyrosine phosphorylation of PKD and the dominant negative mutant of PKD, PKD(Y463F), inhibited VEGF-A(165)-induced human umbilical vein endothelial cell (HUVEC) proliferation. In addition, PKD(S738A/S742A) overexpression inhibited VEGF-induced HUVEC migration. Furthermore, knockdown of PKD by its specific small interfering RNA inhibited VEGF-induced HUVEC proliferation and migration. Moreover transfection of PKD(Y463F), PKD(S738A/S742A), or PKD-small interfering RNA blocked VEGF-induced angiogenesis in vivo. Our signaling experiments show that KDR not Flt-1 mediated PKD tyrosine phosphorylation and KDR tyrosine residues 951 and 1059 were required for VEGF-A(165)-stimulated PKD serine and tyrosine phosphorylation, respectively. Whereas G protein Gbetagamma subunits were required for both PKD serine phosphorylation and tyrosine phosphorylation, intracellular Ca(2+) mobilization was required for VEGF-A(165)-stimulated PKD tyrosine phosphorylation and phospholipase C (PLC) activity was required for PKD serine phosphorylation. Surprisingly, the PLC inhibitor did not inhibit PKD tyrosine phosphorylation. Instead, PKD tyrosine 463 was required for VEGF-A(165)-stimulated PLCgamma tyrosine phosphorylation. Moreover, PKD interacted with PLCgamma even in unstimulated cells, and PKD tyrosine 463 phosphorylation was not required for this interaction. Together, we demonstrate that PKD interacts with PLCgamma and becomes tyrosine phosphorylated upon VEGF stimulation, leading to PLCgamma activation and angiogenic response of VEGF-A(165).  相似文献   

15.
An increase in intracellular free Ca2+ concentration ([Ca2+]i) has been shown to be involved in the increase in ciliary beat frequency (CBF) in response to ATP; however, the signaling pathways associated with inositol 1,4,5-trisphosphate (IP3) receptor-dependent Ca2+ mobilization remain unresolved. Using radioimmunoassay techniques, we have demonstrated the appearance of two IP3 peaks occurring 10 and 60 s after ATP addition, which was strongly correlated with a release of intracellular Ca2+ from internal stores and an influx of extracellular Ca2+, respectively. In addition, ATP-dependent Ca2+ mobilization required protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II activation. We found an increase in PKC activity in response to ATP, with a peak at 60 s after ATP addition. Xestospongin C, an IP3 receptor blocker, significantly diminished both the ATP-induced increase in CBF and the initial transient [Ca2+]i component. ATP addition in the presence of xestospongin C or thapsigargin revealed that the Ca2+ influx is also dependent on IP3 receptor activation. Immunofluorescence and confocal microscopic studies showed the presence of IP3 receptor types 1 and 3 in cultured ciliated cells. Immunogold electron microscopy localized IP3 receptor type 3 to the nucleus, the endoplasmic reticulum, and, interestingly, the plasma membrane. In contrast, IP3 receptor type 1 was found exclusively in the nucleus and the endoplasmic reticulum. Our study demonstrates for the first time the presence of IP3 receptor type 3 in the plasma membrane in ciliated cells and leads us to postulate that the IP3 receptor can directly trigger Ca2+ influx in response to ATP. transduction mechanisms; P2Y receptor; calcium influx  相似文献   

16.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

17.
Vascular endothelial growth factors165 (VEGF165) is the most potent and widely used pro-angiogenic factor. Here we determined optimal culture condition of recombinant human VEGF165 (rhVEGF165) in Escherichia coli (E. coli). rhVEGF165 expression was the highest in 0.25% of l-arabinose induction concentration, at 20 °C induction temperature, and for 5 h induction time under the control of araBAD promoter using pBADHisA vector. In biological activity test, rhVEGF165 significantly increased the proliferative activity of CPAE cells (p < 0.001) and upregulated the expressions of endothelial cell growth-related genes, such as platelet endothelial cell adhesion molecule (PECAM-1), endothelial-specific receptor tyrosine kinase (TEK), kinase insert domain protein receptor (KDR), and tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1) in calf pulmonary artery endothelial (CPAE) cells.  相似文献   

18.
We investigatedthe role of the integrin-associated proteins focal adhesion kinase(FAK) and paxillin as mediators of mechanosensitive signal transductionin tracheal smooth muscle. In muscle strips contracted isometricallywith ACh, we observed higher levels of tyrosine phosphorylation of FAKand paxillin at the optimal muscle length(Lo) than atshorter muscle lengths of 0.5 or 0.75 Lo. Paxillinphosphorylation was also length sensitive in muscles activated byK+ depolarization and adjustedrapidly to changes in muscle length imposed after contractileactivation by either ACh or K+depolarization. Ca2+ depletion didnot affect the length sensitivity of paxillin and FAK phosphorylationin muscles activated with ACh, indicating that the mechanotransductionprocess can be mediated by aCa2+-independent pathway. SinceCa2+-depleted muscles do notgenerate significant active tension, this suggests that themechanotransduction mechanism is sensitive to muscle length rather thantension. We conclude that FAK and paxillin participate in anintegrin-mediated mechanotransduction process in tracheal smoothmuscle. We propose that this pathway may initiate alterations in smoothmuscle cell structure and contractility via the remodeling of actinfilaments and/or via the mechanosensitive regulation ofsignaling molecules involved in contractile protein activation.

  相似文献   

19.
In a variety of disorders, overaccumulation of lipid in nonadipose tissues, including the heart, skeletal muscle, kidney, and liver, is associated with deterioration of normal organ function, and is accompanied by excessive plasma and cellular levels of free fatty acids (FA). Increased concentrations of FA may lead to defects in mitochondrial function found in diverse diseases. One of the most important regulators of mitochondrial function is mitochondrial Ca2+ ([Ca2+]m), which fluctuates in coordination with intracellular Ca2+ ([Ca2+]i). Polyunsaturated FA (PUFA) have been shown to cause [Ca2+]i mobilization albeit by unknown mechanisms. We have found that PUFA but not monounsaturated or saturated FA cause [Ca2+]i mobilization in NT2 human teratocarcinoma cells. Unlike the [Ca2+]i response to the muscarinic G protein-coupled receptor agonist carbachol, PUFA-mediated [Ca2+]i mobilization in NT2 cells is independent of phospholipase C and inositol-1,4,5-trisphospate (IP3) receptor activation, as well as IP3-sensitive internal Ca2+ stores. Furthermore, PUFA-mediated [Ca2+]i mobilization is inhibited by the mitochondria uncoupler carboxyl cyanide m-chlorophenylhydrozone. Direct measurements of [Ca2+]m with X-rhod-1 and 45Ca2+ indicate that PUFA induce Ca2+ efflux from mitochondria. Further studies show that ruthenium red, an inhibitor of the mitochondrial Ca2+ uniporter, blocks PUFA-induced Ca2+ efflux from mitochondria, whereas inhibitors of the mitochondrial permeability transition pore cyclosporin A and bongkrekic acid have no effect. Thus PUFA-gated Ca2+ release from mitochondria, possibly via the Ca2+ uniporter, appears to be the underlying mechanism for PUFA-induced [Ca2+]i mobilization in NT2 cells. arachidonic acid; mitochondrial Ca2+ uniporter; G protein-coupled receptor; IP3 receptor  相似文献   

20.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on the primary vascular endothelium. KDR is responsible for VPF/VEGF-stimulated endothelial cell (EC) proliferation and migration, whereas Flt-1 down-modulates KDR-mediated EC proliferation. Flt-1 mediates down-regulation of EC proliferation through pertussis toxin-sensitive G proteins, betagamma subunits, small GTPase CDC42, and partly by Rac-1. However, the molecular mechanism by which KDR mediates EC migration is not clear yet. Here we show for the first time that activation of RhoA and Rac1 is fully and partially required for KDR-mediated human umbilical vein endothelial cell (HUVEC) migration, respectively, and that CDC42, however, is not involved. Furthermore, overexpression of the RhoA dominant negative mutant RhoA-19N does not affect VPF/VEGF-stimulated KDR phosphorylation, intracellular Ca(2+) mobilization, and mitogen-activated protein kinase phosphorylation. Utilizing the receptor chimeras (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor (EGFR) was fused to the transmembrane domain and the intracellular domains of KDR and Flt-1, respectively, we demonstrate that RhoA activation is mediated by EGDR, not by EGLT, and that EGDR mediates activation of Rac1, not CDC42. Furthermore, the EGDR-mediated RhoA and Rac1 activation is regulated by G proteins Gq/11, Gbetagamma, and phospholipase C independent of phosphatidylinositol 3-kinase and intracellular Ca(2+) mobilization. Interestingly, the RhoA activation can be partially inhibited by overexpression of Rac1-17N, but overexpression of RhoA-19N has no effect on Rac1 activation. Finally, Gq/11 and Gbetagamma subunits are also required for VPF/VEGF-stimulated HUVEC migration. Taken together, our results indicate that KDR stimulates endothelial cell migration through a heterotrimeric G protein Gq/11 and Gbetagamma-mediated RhoA pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号