首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transient analysis of cardiopulmonary interactions. II. Systolic events   总被引:1,自引:0,他引:1  
The etiology of the fall in left ventricular stroke volume (LVSV) and arterial pressure with a negative intrathoracic pressure (NITP) during inspiration is controversial. An increase in LV afterload produced by NITP has been proposed as one explanation but is difficult to evaluate if preload is also altered. To test the hypothesis that a systolic event alone, i.e., a change in LV afterload or contractility, can reduce LVSV during inspiration independent of changes in LV preload, a rapid transient NITP confined to systole was produced by electrocardiogram-triggered phrenic nerve stimulation in eight anesthetized dogs. Intrathoracic descending aortic diameters were measured by sonomicrometry to transduce qualitative changes in aortic transmural pressure. With the airway completely obstructed systolic NITP resulted in a decrease in LVSV (-8.1%, P less than 0.001) but an increase in the systolic anteroposterior (0.54 mm, P less than 0.01) and right-to-left (0.45 mm, P less than 0.01) aortic diameters compared with preceding beat. Similar significant changes were observed with the airway unobstructed. These observations are consistent with an increased afterload imposed on the LV reducing LVSV and egress of blood out of the thorax. Prolonging NITP to include both systole and diastole, a profound fall in LVSV is observed, consistent with the independent influences of systolic and diastolic events combining to diminish LVSV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The etiology of the fall in left ventricular stroke volume (LVSV) with negative intrathoracic pressure (NITP) during inspiration has been ascribed to a reduction in LV preload. This study evaluated the effects of NITP with and without airway obstruction confined to early (ED), mid- (MD), or late diastole (LD) on the subsequent LVSV, anteroposterior (AP), and right-to-left (RL) aortic diameters (DAO) (series I, n = 6) as well as on phasic arterial blood flow out of the thorax (series II, n = 6) in anesthetized dogs. Transient NITP was obtained by electrocardiogram-triggered phrenic nerve stimulation. In series I, NITP applied for 60% of diastole with the airway obstructed caused decreases of LVSV during ED [-7.7 +/- 3.2% (SE) NS], MD (-11.7 +/- 3.9%, P less than 0.05), and LD (-14.6 +/- 1.5%, P less than 0.01) associated with significant increases of left ventricular end-diastolic pressures relative to both atmospheric and esophageal pressures during MD and LD. NITP increased DAO(AP) and DAO(RL), resulting in increases in diastolic aortic cross-sectional area by an average of 6.1-8.3% (P less than 0.01). Similar changes were seen with the airway unobstructed during NITP. In series II, NITP caused diminished diastolic antegrade carotid artery and/or descending aortic flow run off in all dogs. Transient retrograde arterial flows with NITP were observed in more than half of the animals consistent with increases in aortic diameters. We conclude that a decrease of intrathoracic pressure confined to diastole can 1) diminish the ensuing LVSV, presumptively reducing preload by ventricular interdependence; 2) distend the intrathoracic aorta; 3) diminish antegrade flow out of the thorax independent of effects on cardiac performance; and 4) cause transient retrograde carotid and aortic blood flow. The intrathoracic aorta and, presumably, the arterial intrathoracic vascular compartment can be viewed as an elastic container driven by changes in intrathoracic pressure.  相似文献   

3.
We tested the hypothesis that increases in intrathoracic pressure (ITP), by decreasing the pressure gradient for anterograde left ventricular (LV) ejection, should augment cardiac output in acute mitral regurgitation (MR). In a pentobarbital-anesthetized closed-chest canine model, LV stroke volume (SLLV) was measured by integration from an aortic flow probe signal. MR was induced by a regurgitant ring. ITP was elevated over apnea by means of intermittent positive-pressure ventilation (IPPV), asynchronous (asynch) high-frequency jet ventilation (HFJV), and cardiac cycle-specific (synch) HFJV. IPPV resulted in the greatest increase in ITP. MR caused a fall in SVLV and a rise in LV filling pressure that were not altered by IPPV. Compared with IPPV or apnea, both asynch and synch HFJV increased SVLV and reduced LV filling pressures (P less than 0.05). Systolic synch HFJV induced a greater increase in SVLV (32%) than diastolic synch HFJV (26%) despite similar ventilatory settings. Our data suggest that when LV contractility is normal but MR impairs forward flow, cardiac cycle-specific increases in ITP will augment forward flow.  相似文献   

4.
We studied the cardiovascular effects of phasic increases in intrathoracic pressure (ITP) by high-frequency jet ventilation in an acute pentobarbital-anesthetized intact canine model both before and after the induction of acute ventricular failure by large doses of propranolol. Chest and abdominal pneumatic binders were used to further increase ITP. Respiratory frequency, percent inspiratory time, mean ITP, and swings in ITP throughout the respiratory cycle were independently varied at a constant-circulating blood volume. We found that pertubations in mean ITP induced by ventilator adjustments accounted for all observable steady-state hemodynamic changes independent of respiratory frequency, inspiratory time, or phasic respiratory swings in ITP. Changes in ITP were associated with reciprocal changes in both intrathoracic vascular pressures (P less than 0.01) and blood volume (P less than 0.01). When cardiac function was normal, left ventricular (LV) stroke volume decreased, whereas in acute ventricular failure, LV stroke volume increased in response to increasing ITP when apneic LV filling pressure was high (greater than or equal to 17 Torr) and did not change if apneic LV filling pressure was low (less than or equal to 12 Torr). However, in all animals in acute ventricular failure, LV stroke work increased with increasing ITP. Our study demonstrates that the improved cardiac function seen with increasing ITP in acute ventricular failure is dependent upon adequate LV filling and decreased LV afterload in a manner analogous to that seen with arterial vasodilator therapy in heart failure.  相似文献   

5.
Positive-pressure ventilation (PPV) may affect left ventricular (LV) performance by altering both LV diastolic compliance and pericardial pressure (Ppc). We measured the effect of PPV on LV intraluminal pressure, Ppc, LV volume, and LV cross-sectional area in 17 acute anesthetized dogs. To account for changes in lung volume independent of changes in Ppc and differences in contractility, measures were made during both open- and closed-chest conditions, during closed chest with and without chest wall binding, and after propranolol-induced acute ventricular failure (AVF). Apneic end-systolic pressure-volume relations (ESPVR) were generated by inferior vena caval occlusions. With the open chest, PPV had no effects. With the chest closed, PPV inspiration decreased LV end-diastolic volume (EDV) along its diastolic compliance curve and decreased end-systolic volume (ESV) such that the end-systolic pressure-volume domain was shifted to a point left of the LV ESPVR, even when referenced to Ppc. The decrease in EDV was greater in control than in AVF conditions, whereas the shift of the ESV to the left of the ESPVR was greater with AVF than in control conditions. We conclude that the hemodynamic effects of PPV inspiration are due primarily to changes in intrathoracic pressure and that the inspiration-induced decreases of LV EDV reflect direct effects of intrathoracic pressure on LV filling. The decreases in LV ESV exceed the amount explained solely by a reduction in LV ejection pressure.  相似文献   

6.
The cause of the fall in left ventricular (LV) stroke volume (SV) during a fall in pleural pressure (Pp1) has been in dispute for over a century. We have defined the changes in the temporal relationship between LV inflow (Qm) and outflow (Qa) in a canine preparation to test the mutually exclusive hypotheses that the fall in LVSV is caused only by changes during diastole (e.g., ventricular interdependence) or only by changes during systole (e.g., afterload). The ability of the experimental preparation to measure the results of acute changes in right heart volume or output and acute changes in LV afterload was validated in open-chest studies with and without pericardial constraint. In closed-chest studies, with a fall in Pp1 during a Mueller maneuver Qm reached both its inspiratory minimum and expiratory maximum before Qa in 80% of the Mueller maneuvers, invalidating both hypotheses, which each required that one flow lead the other in 100% of the Mueller maneuvers. Review of individual records suggested that if the rapid changes in Pp1 occurred during systole, Qa could vary in a manner independent of the preceding Qm. These studies suggest that both diastolic and systolic events may contribute to the fall in SV, while causing opposite changes in LV volumes.  相似文献   

7.
With respiration, right ventricular end-diastolic volume fluctuates. We examined the importance of these right ventricular volume changes on left ventricular function. In six mongrel dogs, right and left ventricular volumes and pressures and esophageal pressure were simultaneously measured during normal respiration, Valsalva maneuver, and Mueller maneuver. The right and left ventricular volumes were calculated from cineradiographic positions of endocardial radiopaque markers. Increases in right ventricular volume were associated with changes in the left ventricular (LV) pressure-volume relationship. With normal respiration, right ventricular end-diastolic volume increased 2.3 +/- 0.7 ml during inspiration, LV transmural diastolic pressure was unchanged, and LV diastolic volume decreased slightly. This effect was accentuated by the Mueller maneuver; right ventricular end-diastolic volume increased 10.4 +/- 2.3 ml (P less than 0.05), while left ventricular end-diastolic pressure increased 3.6 mmHg (P less than 0.05) without a significant change in left ventricular end-diastolic volume. Conversely, with a Valsalva maneuver, right ventricular volume decreased 6.5 +/- 1.2 ml (P less than 0.05), and left ventricular end-diastolic pressure decreased 2.2 +/- 0.5 mmHg (P less than 0.05) despite an unchanged left ventricular end-diastolic volume. These changes in the left ventricular pressure-volume relationship, secondary to changes in right ventricular volumes, are probably due to ventricular interdependence. Ventricular interdependence may also be an additional factor for the decrease in left ventricular stroke volume during inspiration.  相似文献   

8.
Exaggerated inspiratory swings in intrathoracic pressure have been postulated to increase left ventricular (LV) afterload. These predictions are based on measurements of LV afterload by use of esophageal or lateral pleural pressure. Using direct measurements of pericardial pressure, we reexamined respiratory changes in LV afterload. In 11 anesthetized vagotomized dogs, we measured arterial pressure, LV end-systolic (ES) and end-diastolic transmural (TM) pressures, stroke volume (SV), diastolic left anterior descending blood flow (CBF-D), and coronary resistance. Dogs were studied before and while breathing against an inspiratory threshold load of -20 to -25 cmH2O compared with end expiration. Relative to end expiration, SV and LVES TM pressures decreased during inspiration and increased during early expiration, effects exaggerated during inspiratory loading. In all cases, LV afterload (LVES TM pressure) changed in parallel with SV. LV end-diastolic TM pressure did not change. CBF-D paralleled arterial pressure, and there were no changes in coronary resistance. In two dogs, regional LVES segment length paralleled calculated changes in LVES TM pressure. We conclude that 1) LV afterload decreases during early inspiration and increases during early expiration, changes secondary to those in SV; 2) changes in CBF-D are secondary to changes in perfusion pressure during the respiratory cycle; and 3) the use of esophageal or lateral pleural pressure to estimate LV surface pressure overestimates changes in LV TM pressures during respiration.  相似文献   

9.
Left ventricular stroke volume (LVSV) falls during obstructed inspiration in animals and normal human subjects through mechanisms that may be closely related to pleural pressure. In this study we postulated that a similar reduction in LVSV should occur in patients with obstructive sleep apnea (OSA). Daytime polysomnograms were performed in 10 patients with OSA. A noninvasive electrical impedance method was used to determine LVSV. Pleural pressure was measured by esophageal balloon. In comparison with awake values, during OSA we found reductions in LVSV, cardiac output, and heart rate of 18, 27, and 11%, respectively (P less than 0.01). We observed that systolic pleural pressure did not have a significant effect on LVSV (P greater than 0.05). However, at pleural pressures lower than 10 cmH2O below resting expiratory level, there was a linear relationship between falls in LVSV and falls in middiastolic pleural pressure (P less than 0.0001). We concluded that reduced LVSV shown in patients with OSA was significantly related to diastolic pleural pressure level. Our findings suggested reduced preload as the most likely mechanism for decreased cardiac output in OSA.  相似文献   

10.
In 12 dogs, we examined the correspondence between esophageal (Pes) and pericardial pressures over the anterior, lateral, and inferior left ventricular (LV) surfaces. Pleural pressure was decreased by spontaneous inspiration, Mueller maneuver, and phrenic stimulation and increased by intermittent positive pressure ventilation (IPPV) and positive end-expiratory pressure (PEEP). To separate effects due to blood flow, we analyzed beating and nonbeating hearts. In beating hearts, there were no significant differences between changes in Pes and pericardial pressures. In arrested hearts, increasing LV pressure by 8 Torr increased pericardial pressures by only 3.6 Torr. With IPPV and PEEP, increases in Pes and pericardial pressures were equal in live hearts and in low-volume arrested hearts (LV pressure = 4 Torr). In high-volume arrested hearts (LV pressure = 12 Torr), the increase in pericardial pressure over the anterior LV surface was less than Pes, whereas that over the lateral and inferior LV surfaces was the same as Pes. At high LV volume, in arrested hearts pericardial pressures decreased less than Pes during negative pressure maneuvers. In another six dogs, external LV configuration and volume were measured. In beating hearts during spontaneous inspiration, Mueller maneuver, and phrenic stimulation (endotracheal tube open), septal-lateral dimension and LV volume decreased by approximately 3% (P less than 0.05). This was also true for PEEP. In arrested hearts, septal-lateral dimension and LV volume decreased only with PEEP. We conclude that 1) the relationship between Pes and pericardial pressures is complex and depends on LV volume, local pericardial compliance, and the means by which Pes is changed, 2) changes in measured pericardial pressures did not completely explain changes in LV configuration, and 3) during different respiratory maneuvers, different forces account for the same observed changes in LV volume and configuration.  相似文献   

11.
We studied the acute effect of high-intensity interval exercise on biventricular function using cardiac magnetic resonance imaging in nine patients [age: 49 ± 16 yr; left ventricular (LV) ejection fraction (EF): 35.8 ± 7.2%] with nonischemic mild heart failure (HF). We hypothesized that a significant impairment in the immediate postexercise end-systolic volume (ESV) and end-diastolic volume (EDV) would contribute to a reduction in EF. We found that immediately following acute high-intensity interval exercise, LV ESV decreased by 6% and LV systolic annular velocity increased by 21% (both P < 0.05). Thirty minutes following exercise (+30 min), there was an absolute increase in LV EF of 2.4% (P < 0.05). Measures of preload, left atrial volume and LV EDV, were reduced immediately following exercise. Similar responses were observed for right ventricular volumes. Early filling velocity, filling rate, and diastolic annular velocity remained unchanged, while LV untwisting rate increased 24% immediately following exercise (P < 0.05) and remained 18% above baseline at +30 min (P < 0.05). The major novel findings of this investigation are 1) that acute high-intensity interval exercise decreases the immediate postexercise LV ESV and increases LV EF at +30 min in patients with mild HF, and this is associated with a reduction in LV afterload and maintenance of contractility, and 2) that despite a reduction in left atrial volume and LV EDV immediately postexercise, diastolic function is preserved and may be modulated by enhanced LV peak untwisting rate. Acute high-intensity interval exercise does not impair postexercise biventricular function in patients with nonischemic mild HF.  相似文献   

12.
In early diastole, pressure is lower in the apex than in the base of the left ventricle (LV). This early intraventricular pressure difference (IVPD) facilitates LV filling. We assessed how LV diastolic IVPD and intraventricular pressure gradient (IVPG), defined as IVPD divided by length, scale to the heart size and other physiological variables. We studied 10 mice, 10 rats, 5 rabbits, 12 dogs, and 21 humans by echocardiography. Color Doppler M-mode data were postprocessed to reconstruct IVPD and IVPG. Normalized LV filling time was calculated by dividing filling time by RR interval. The relationship between IVPD, IVPG, normalized LV filling time, and LV end-diastolic volume (or mass) as fit to the general scaling equation Y = kM beta, where M is LV heart size parameter, Y is a dependent variable, k is a constant, and beta is the power of the scaling exponent. LV mass varied from 0.049 to 194 g, whereas end-diastolic volume varied from 0.011 to 149 ml. The beta values relating normalized LV filling time with LV mass and end-diastolic volume were 0.091 (SD 0.011) and 0.083 (SD 0.009), respectively (P < 0.0001 vs. 0 for both). The beta values relating IVPD with LV mass and end-diastolic volume were similarly significant at 0.271 (SD 0.039) and 0.243 (SD 0.0361), respectively (P < 0.0001 vs. 0 for both). Finally, beta values relating IVPG with LV mass and end-diastolic volume were -0.118 (SD 0.013) and -0.104 (SD 0.011), respectively (P < 0.0001 vs. 0 for both). As a result, there was an inverse relationship between IVPG and normalized LV filling time (r = -0.65, P < 0.001). We conclude that IVPD decrease, while IVPG increase with decreasing animal size. High IVPG in small mammals may be an adaptive mechanism to short filling times.  相似文献   

13.
Patients with obstructive sleep apnea (OSA) experience repetitive nocturnal oscillations of systemic arterial pressure that occur in association with changes in respiration and changes in sleep state. To investigate cardiac function during the cycle of obstruction (apnea) and resumption of ventilation (recovery), we continuously measured left ventricular stroke volume (LVSV) and mean arterial blood pressure (MAP) during non-rapid-eye-movement sleep in six males with severe OSA (apnea/hypopnea index > or = 30 events/h associated with oxygen saturation < 82%). LVSV was assessed continuously using an ambulatory ventricular function monitor (VEST; Capintec). The apnea-recovery cycle was divided into three phases: 1) early apnea (EA), 2) late apnea (LA), and 3) recovery (Rec). In all subjects recovery was associated with an abrupt decrease in LVSV [54.0 +/- 14.5 (SD) ml] compared with either EA (91.4 +/- 14.7 ml; P < 0.001) or LA (77.1 +/- 15.2 ml; P < 0.005). Although heart rate increased with recovery, the increase was not sufficient to compensate for the decrease in LVSV so that cardiac output (CO) fell (EA: 6,247 +/- 739 ml/min; LA: 5,741 +/- 1,094 ml/min; Rec: 4,601 +/- 1,249 ml/min; EA vs. Rec, P < 0.01; LA vs. Rec, P < 0.025). Recovery was also associated with a significant increase in MAP. We speculate that such abrupt decreases in LVSV and CO at apnea termination, occurring coincident with the nadir of oxygen saturation, may further compromise tissue oxygen delivery.  相似文献   

14.
Changes in intrathoracic pressure (ITP) can influence cardiac performance by affecting ventricular loading conditions. Because both systemic venous return and factors determining left ventricular (LV) ejection may vary over the cardiac cycle, phasic increases in ITP may differentially affect preload or afterload if delivered at specific points within the cardiac cycle. We studied the hemodynamic effects of cardiac cycle-specific increases in ITP (pulses) delivered by a high-frequency jet ventilator in an acute closed-chested canine model (n = 11), using electromagnetic flow probes to measure biventricular stroke volume. Measurements were taken during a control condition after the induction of acute ventricular failure (AVF) by propranolol hydrochloride and volume infusion. ITP was independently varied without changing lung volume by the inflation of thoracoabdominal binders. Although synchronous pulses had minimal hemodynamic effects in unbound controls, binding pulses timed to occur in early diastole resulted in decreases in LV filling pressure and left ventricular stroke volume (SVlv) (P less than 0.05). In the AVF condition, pulses increased LV performance, evidenced by increases in SVlv (P less than 0.01), despite decreases in LV filling pressure (P less than 0.05). This effect is maximized by binding and by timing the pulses to occur in systole. We conclude that cardiac cycle-specific increases in ITP can significantly affect cardiac performance. These effects appear to be related to the ability of such timed pulses to selectively affect LV preload and afterload.  相似文献   

15.
To clarify the effects of respiration on left ventricular (LV) dimensions and shortening, we studied chronically instrumented dogs with endocardial sonomicrometer crystals in the anterior-posterior (AP), septal to lateral (SL), and long axes (LA) following pericardiectomy. Ten anesthetized dogs were examined during spontaneous unobstructed respiration, partial inspiratory obstruction (PIO), and Mueller maneuvers (MM). During unobstructed inspiration, end-diastolic dimensions (EDD) demonstrated a significant increase in the AP and a similar decrease in the SL axis (i.e., noncongruent shape changes). During PIO only the SL EDD diminished significantly, while no significant changes occurred in any EDD during MM. Individual dogs also demonstrated noncongruent shape changes at end systole during inspiration. However, the end-systolic dimensions for the entire group demonstrated a significant increase in one dimension during each inspiratory mode with no significant changes in the other two axes suggesting an increased ventricular volume. Regional shortening declined only in the SL axis during both unobstructed respiration and PIO. Spontaneous sighs with large tidal volumes, yet smaller changes in pleural pressure than during the MM, were associated with marked noncongruent shape changes in both diastole and systole. We conclude that 1) estimates of LV volumes during respiration based on only one or two axes and assuming regional congruent shape changes may be misleading; and 2) lung volume changes can affect LV geometry independently of changes in pleural pressure.  相似文献   

16.
During acute pulmonary hypertension, both the pericardium and the right ventricle (RV) constrain left ventricular (LV) filling; therefore, pericardiotomy should improve LV function. LV, RV, and pericardial pressures and RV and LV dimensions and LV stroke volume (SV) were measured in six anesthetized dogs. The pericardium was closed, the chest was left open, and the lungs were held away from the heart. Data were collected at baseline, during pulmonary artery constriction (PAC), and after pericardiotomy with PAC maintained. PAC decreased SV by one-half. RV diameter increased, and septum-to-LV free wall diameter and LV area (our index of LV end-diastolic volume) decreased. Compared with during PAC, pericardiotomy increased LV area and SV increased 35%. LV and RV compliance (pressure-dimension relations) and LV contractility (stroke work-LV area relations) were unchanged. Although series interaction accounts for much of the decreased cardiac output during acute pulmonary hypertension, pericardial constraint and leftward septal shift are also important. Pericardiotomy can improve LV function in the absence of other sources of external constraint to LV filling.  相似文献   

17.
Doppler ultrasound measures of left ventricular (LV) active relaxation and diastolic suction are slowed with healthy aging. It is unclear to what extent these changes are related to alterations in intrinsic LV properties and/or cardiovascular loading conditions. Seventy carefully screened individuals (38 female, 32 male) aged 21-77 were recruited into four age groups (young: <35; early middle age: 35-49; late middle age: 50-64 and seniors: ≥65 yr). Pulmonary capillary wedge pressure (PCWP), stroke volume, LV end-diastolic volume, and Doppler measures of LV diastolic filling were collected at multiple loading conditions, including supine baseline, lower body negative pressure to reduce LV filling, and saline infusion to increase LV filling. LV mass, supine PCWP, and heart rate were not affected significantly by aging. Measures of LV relaxation, including isovolumic relaxation time and the time constant of isovolumic pressure decay increased progressively, whereas peak early mitral annular longitudinal velocity decreased with advancing age (P < 0.001). The propagation velocity of early mitral inflow, a noninvasive measure of LV suction, decreased with aging with the greatest reduction in seniors (P < 0.001). Age-related differences in LV relaxation and diastolic suction were not attenuated significantly when PCWP was increased in older subjects or reduced in the younger subjects. There is an early slowing of LV relaxation and diastolic suction beginning in early middle age, with the greatest reduction observed in seniors. Because age-related differences in LV dynamic diastolic filling parameters were not diminished significantly with significant changes in LV loading conditions, a decline in ventricular relaxation is likely responsible for the alterations in LV diastolic filling with senescence.  相似文献   

18.
Pericardial constraint and ventricular interaction influence left ventricular (LV) performance when preload is high. However, it is unclear if these constraining forces modulate LV filling when the heart is unloaded, such as during upright posture, in humans. Fifty healthy individuals underwent right heart catheterization to measure pulmonary capillary wedge (PCWP) and right atrial pressure (RAP). To evaluate the effects of pericardial constraint on hemodynamics, transmural filling pressure (LVTMP) was defined as PCWP-RAP. Beat-to-beat blood pressure (BP) waveforms were recorded, and stroke volume (SV) was derived from the Modelflow method. After measurements at -30 mmHg lower body negative pressure (LBNP), which approximates the upright position, LBNP was released, and beat-to-beat measurements were performed for 15 heartbeats. At -30 mmHg LBNP, RAP and PCWP were significantly decreased. During the first six beats of LBNP release, heart rate (HR) was unchanged, while BP increased from the fourth beat. RAP increased faster than PCWP resulting in an acute decrease in LVTMP from the fourth beat. A corresponding drop in SV by 3% was observed with no change in pulse pressure. From the 7th to 15th beats, LVTMP and SV increased steadily, followed by a decreased HR due to the baroreflex. A decreased TMP, but not PCWP, caused a transient drop in SV with no changes in HR or pulse pressure during LBNP release. These results suggest that the pericardium constrains LV filling during LBNP release, enough to cause a small but significant drop of SV, even at low cardiac filling pressure in healthy humans.  相似文献   

19.
The purpose of this study was to characterize left ventricular (LV) diastolic filling and systolic performance during graded arm exercise and to examine the effects of lower body positive pressure (LBPP) or concomitant leg exercise as means to enhance LV preload in aerobically trained individuals. Subjects were eight men with a mean age (+/-SE) of 26.8 +/- 1.2 yr. Peak exercise testing was first performed for both legs [maximal oxygen uptake (Vo(2)) = 4.21 +/- 0.19 l/min] and arms (2.56 +/- 0.16 l/min). On a separate occasion, LV filling and ejection parameters were acquired using non-imaging scintography using in vivo red blood cell labeling with technetium 99(m) first during leg exercise performed in succession for 2 min at increasing grades to peak effort. Graded arm exercise (at 30, 60, 80, and 100% peak Vo(2)) was performed during three randomly assigned conditions: control (no intervention), with concurrent leg cycling (at a constant 15% leg maximal Vo(2)) or with 60 mmHg of LBPP using an Anti G suit. Peak leg exercise LV ejection fraction was higher than arm exercise (60.9 +/- 1.7% vs. 55.9 +/- 2.7%; P < 0.05) as was peak LV end-diastolic volume was reported as % of resting value (110.3 +/- 4.4% vs. 97 +/- 3.7%; P < 0.05) and peak filling rate (end-diastolic volume/s; 6.4 +/- 0.28% vs. 5.2 +/- 0.25%). Concomitant use of either low-intensity leg exercise or LBPP during arm exercise failed to significantly increase LV filling or ejection parameters. These observations suggest that perturbations in preload fail to overcome the inherent hemodynamic conditions present during arm exercise that attenuate LV performance.  相似文献   

20.
The diastolic dysfunction present at rest in congestive heart failure (CHF) is exacerbated during exercise (Ex). Increases in circulating ANG II and endothelin-1 (ET-1) during Ex may contribute to this response. We assessed the effect of Ex on circulating plasma levels of ANG II and ET-1 and left ventricular (LV) dynamics before and after pacing-induced CHF at rest and during Ex in nine conscious, instrumented dogs. Before CHF, there were modest increases in circulating levels of ANG II (but not ET-1) during Ex. LV diastolic performance was enhanced during Ex with decreases in the time constant of LV relaxation (tau), LV end-systolic volume (V(ES)), and LV minimum pressure with a downward shift of the LV early diastolic portion of the pressure-volume (P-V) loop. This produced an increase in peak LV filling rate without an increase in mean left atrial (LA) pressure. After CHF, the resting values of ANG II and ET-1 were elevated and increased to very high levels during Ex. After CHF, mean LA pressure, tau, and LV minimum pressure were elevated at rest and increased further during Ex. Treatment with L-754,142, a potent ET-1 antagonist, or losartan, an ANG II AT(1)-receptor blocker, decreased these abnormal Ex responses in CHF more effectively than an equally vasodilatory dose of sodium nitroprusside. Combined treatment with both ANG II- and ET-1-receptor blockers was more effective than either agent alone. We conclude that in CHF, circulating ANG II and ET-1 increase to very high levels during Ex and exacerbate the diastolic dysfunction present at rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号