首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is evidence for robust interactions of weak ELF magnetic fields with biological systems. Quite apart from the difficulties attending a proper physical basis for such interactions, an equally daunting question asks why these should even occur, given the apparent lack of comparable signals in the long-term electromagnetic environment. We suggest that the biological basis is likely to be found in the weak (~50?nT) daily swing in the geomagnetic field that results from the solar tidal force on free electrons in the upper atmosphere, a remarkably constant effect exactly in phase with the solar diurnal change. Because this magnetic change is locked into the solar-derived everyday diurnal response in living things, one can argue that it acts as a surrogate for the solar variation, and therefore plays a role in chronobiological processes. This implies that weak magnetic field interactions may have a chronodisruptive basis, homologous to the more familiar effects on the biological clock arising from sleep deprivation, phase-shift employment and light at night. It is conceivable that the widespread sensitivity of biological systems to weak ELF magnetic fields is vestigially derived from this diurnal geomagnetic effect.  相似文献   

2.
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited.  相似文献   

3.
The magnetic flux density of MRI for clinical diagnosis has been steadily increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the effects of strong SMFs on biological systems, we cultured insulin-secreting cells under exposure to sham and SMF conditions (3-10 T of magnetic flux density, and 0-41.7 T/m of magnetic field gradient) for 0.5 or 1 h, and analyzed insulin secretion, mRNA expression, glucose-stimulated insulin secretion, insulin content, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF with a high magnetic flux density for 0.5 h significantly enhanced responsiveness to glucose stimulation. Exposure to SMF did not affect the insulin content, cell proliferation or cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells, and that SMF with a high magnetic field gradient might be used clinically after thorough in vivo investigations are conducted.  相似文献   

4.
It was shown that the stimulating effect of weak combined magnetic fields (constant component 42 microT, frequency of the variable component 3.7 Hz) on the division of planarians depends on the amplitude of the variable component of the field. The effect is particularly pronounced at 40 (the main maximum), 120, 160, and 640 nT. Narrow ranges of effective amplitudes alternate in some cases with equally narrow ranges in which the system does not respond to he treatment. In the range of super weak amplitudes of the variable field (0.1 and 1 nT), the stimulating effect is poorly pronounced. The data obtained indicate the presence of narrow amplitude windows in the response of the biological systems to weak and super weak magnetic fields. In a special series of experiments, it was shown that the effect of fields on planarians is partially mediated via aqueous medium preliminarily treated with weak magnetic fields. It is noteworthy that in experiments with water treated with weak magnetic fields, there were no pronounced maxima and minima in the magnitude of the effect in the range of amplitude of the variable magnetic field from 40 to 320 nT.  相似文献   

5.
M G Yost  R P Liburdy 《FEBS letters》1992,296(2):117-122
We have tested the hypothesis that extremely low frequency (ELF) time-varying magnetic fields act in combination with static magnetic fields to alter calcium signalling in the lymphocyte. Results indicate that a 60-min exposure of thymic lymphocytes at 37 +/- 0.05 degrees C to a 16 Hz, 421 mG (42.1 microT) magnetic field simultaneously with a colinear static magnetic field of 234 mG (23.4 microT) (a.c./d.c. field intensity ratio = 1.8) inhibits calcium influx triggered by the mitogen Concanavalin A. Significantly, resting lymphocytes do not respond to the fields, thus, only mitogen-activated cells undergoing calcium signalling exhibit a field response. These results indicate that signal transduction involving calcium is an important biological constraint which operates to mediate this field interaction. Additional split field exposures show that the presence of the a.c. field or the d.c. field alone does not produce an effect. This is consistent with a proposed parametric resonance theory of interaction of low intensity magnetic fields with biological systems (L.L. Lednev (1991) Bioelectromagnetics 12, 71-75), which predicts the occurrence of biological effects at specific values for the frequency and field intensity of the ELF and static magnetic fields.  相似文献   

6.
The debate as to whether low-level electromagnetic fields can affect biological systems and in the long term cause health effects has been going on for a long time. Yet the interaction of weak electromagnetic fields (EMF) with living cells, undoubtedly a most important phenomenon, is still not well understood. The exact mechanisms by which the effects are produced have not been identified. Furthermore, it is not possible to clearly define which aspects of an EMF exposure that constitute the “dose.” One of the groups that contributed to solving this problem is the Bioelectromagnetics group at Catholic University of America (CUA), Washington, D.C. Their work has been devoted to investigating the physical parameters that are needed to obtain an effect of EMF exposure on biological systems, and also how to inhibit the effect. This is a review of their work on bioeffects caused by low-level EMF, their dependence on coherence time, constancy, spatial averaging, and also how the effects can be modified by an applied ELF noise magnetic field. The group has been using early chick embryos, and L929 and Daudi cells as their main experimental systems. The review also covers the work of other groups on low-level effects and the inhibition of the effects with an applied noise field. The group at CUA has shown that biological effects can be found after exposure to low-level ELF and RF electromagnetic fields, and when effects are observed, applying an ELF magnetic noise field inhibits the effects. Also, other research groups have tried to replicate the studies from the CUA group, or to apply EMF noise to suppress EMF-induced effects. Replications of the CUA effects have not always been successful. However, in all cases where the noise field has been applied to prevent an observed effect, it has been successful in eliminating the effect.  相似文献   

7.
It is (theoretically) shown by an example of the reaction of a radical with an oxygen molecule that the alternating component of a combined weak magnetic field affects the rate constants of chemical reactions. The mechanism of transduction of a weak magnetic perturbation from the primary receptor of the field to experimentally observed biological effects is followed. It is stated that the external magnetic field alters the initial population of energy levels. The magnitude of these changes depends on the field parameters. The exposure to an alternating field with proper parameters can substantially increase the concentration of reactive oxygen species in biological systems. By controlling their concentration by means of weak magnetic field, it is possible to affect the key links of metabolism.  相似文献   

8.
磁生物学效应的研究进展   总被引:8,自引:5,他引:3       下载免费PDF全文
磁场作用于生物体后产生一系列的生物学效应,这种观点已被多年来的许多实验所证实。早在1896年,磁场对神经系统作用的研究就已被报道。后来,磁场抗炎,促进骨生成,促进血管神经再生等作用相继被发现。近几十年来,关于磁场对生物体的作用,从流行病学调查到实验室研究也都有了一定进展。如今,磁场的生物学效应研究已成为物理医学研究的热点。本文就近年来磁场生物学效应研究的热点与进展作一简要综述。  相似文献   

9.
This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community.  相似文献   

10.
Most of the published studies on magnetic field action on biological systems have examined reactions in animals, while a smaller number of studies have reported magnetic field effects in plants. The effects of static magnetic field on the activity of several key enzymes in plant metabolism, such as malate dehydrogenase, succinate oxidase, succinate dehydrogenase, and cytochrome oxidase in young wheat seedlings, have been investigated in this study. It appears that the observed changes in enzyme activity could be considered to be a result of the influence of the magnetic field on the reactivity of these enzymes, including effects on metal cations that regulate enzyme activity. The results support the idea of the existence of “biological windows,” particularly with respect to exposure time.  相似文献   

11.
The use of a magnetic field gradient levitation apparatus as a tool for investigating gravisensing mechanisms in biological systems and as a low gravity simulator for biological systems is described. The basic principles are described. Differences between its application to pure materials and the heterogeneous materials of biological materials are emphasized.  相似文献   

12.
Except for relatively few polarity reversals the magnitude of the magnetic dipole moment of the earth has remained constant since life first began, allowing evolutionary processes to integrate the geomagnetic field (GMF) into several biological functions. One of these, bearing the classical signature of an ion cyclotron resonance (ICR)-like interaction, results in biological change associated with enhanced proton transport. The wide range of cation masses over which this effect is found suggest a fundamental biological dependence on the GMF, one that functions equally well for electric as well as magnetic fields. Such generalization of ICR requires two things: transparency of tissues to the GMF and suitably tuned ELF resonant magnetic or electric fields. To complement the widely reported ICR responses to applied AC magnetic fields, we hypothesize the existence of weak endogenous ICR electric field oscillations within the cell. This equivalence implies that even in the absence of applied AC magnetic fields, biological systems will exhibit intrinsic GMF-dependent ion cyclotron resonance intracellular interactions. Many ICR effects that have been reported appear as antagonist pairs suggesting that the characteristics of the GMF have not only been incorporated into the genome but also appear to function in an endocrine-like manner.  相似文献   

13.
A physical mechanism is suggested for a resonant interaction of weak magnetic fields with biological systems. An ion inside a Ca(2+)-binding protein is approximated by a charged oscillator. A shift in the probability of ion transition between different vibrational energy levels occurs when a combination of static and alternating magnetic fields is applied. This in turn affects the interaction of the ion with the surrounding ligands. The effect reaches its maximum when the frequency of the alternating field is equal to the cyclotron frequency of this ion or to some of its harmonics or sub-harmonics. A resonant response of the biosystem to the magnetic field results. The proposed theory permits a quantitative explanation for the main characteristics of experimentally observed effects.  相似文献   

14.
Distortions in magnetic field intensity generated by commonly used microscope objectives (1x to 100x) were characterized within a Helmholtz coil-based exposure system. Objectives from a variety of manufacturers distorted applied field intensities by up to 23% in the image plane. Components that contribute to distortions include (1) nickel-chrome plating of objective housings, (2) the presence of steel springs in objectives with compression collars, and (3) steel screws or studs used to hold together separately manufactured parts. Steel springs and screws produce radially asymmetric profiles, whereas distortions generated by nickel-chrome plating are typically radially symmetric. All components can produce spatial gradients in field intensity if objectives are not perfectly aligned with exposure systems or if placed in the earth's magnetic field. Alterations in the magnitude of magnetic field intensities as well as the production of spatial gradients might have an effect on biological responses. By maintaining optical glass components and replacing metallic components, functional objectives can be reconstructed that produce no measurable effects on magnetic flux densities.  相似文献   

15.
The biological effects of extremely low frequency magnetic fields (ELF MFs) on living organisms have been explored in many studies. Most of them demonstrate the biological effects caused by 50/60 Hz magnetic fields or pulsed magnetic fields. However, as the development of power electronics flourishes, the magnetic fields induced are usually in other different waveforms. This study aims to assess the effects of magnetic fields generated by inverter systems on the early growth of plants using mung beans as an example. In the experiment, an inverter which can produce sinusoidal pulsed width modulation (SPWM) voltages was used to drive 3 specially made circular coils and an AC motor. Six SPWM voltages with different fundamental frequencies (10, 20, 30, 40, 50, and 60 Hz) set on the inverter drive the circuit to produce the specific kinds of MFs. The results indicate that the magnetic field induced by a 20 or 60 Hz SPWM voltage has an enhancing effect on the early growth of mung beans, but the magnetic fields induced by SPWM voltages of other frequencies (30, 40, and 50 Hz) have an inhibitory effect, especially at 50 Hz.  相似文献   

16.
Bingi VN 《Biofizika》2000,45(4):757-759
The interference mechanism for biological reception of weak magnetic fields was studied with consideration for the own molecular rotations of ion-protein complexes. An additional rotation of a biological system is shown to decrease the biological effect of "magnetic vacuum" and split spectral peaks from the effects of static magnetic field.  相似文献   

17.
We advance the hypothesis that biological systems utilize the geomagnetic field (GMF) for functional purposes by means of ion cyclotron resonance-like (ICR) mechanisms. Numerous ICR-designed experiments have demonstrated that living things are sensitive, in varying degrees, to magnetic fields that are equivalent to both changes in the general magnetostatic intensity of the GMF, as well as its temporal perturbations. We propose the existence of ICR-like cell regulation processes, homologous to the way that biochemical messengers alter the net biological state through competing processes of enhancement and inhibition. In like manner, combinations of different resonance frequencies all coupled to the same local magnetic field provide a unique means for cell regulation. Recent work on ultraweak ICR magnetic fields by Zhadin and others fits into our proposed framework if one assumes that cellular systems generate time-varying electric fields of the order 100 mV/cm with bandwidths that include relevant ICR frequencies.  相似文献   

18.
The important experiments showing nonlinear amplitude dependences of the neurite outgrowth in pheochromocytoma nerve cells due to ELF magnetic field exposure had been carried out in a nonuniform ac magnetic field. The nonuniformity entailed larger than expected variances in magnetic field magnitudes associated with specific levels of biological effects, thereby evoking a question about validity of the interpretations formulated for the case of a uniform field. In this work, we calculate the relative value of nonuniformity and deviations in ac magnetic field. It is shown that these factors do not affect the main conclusion in the original papers about the form of the amplitude dependence of the observed biological effect.  相似文献   

19.
亚磁场及其生物响应机制   总被引:1,自引:0,他引:1  
根据亚磁生物学的研究历史和空间亚磁环境的实际情况,本文定义磁感应强度总量在“0<|B|≤5 μT”区间内的静态弱磁场为亚磁场.亚磁场能对生命活动的多个方面,特别是中枢神经系统产生负面影响.随着月球与火星航天计划的开展,航天员将长期暴露于亚磁空间中.这可能对宇航员的身心健康带来潜在的危害.亚磁场生物学效应及其机制的研究,将为相关载人航天的空间防护提供理论基础,已成为空间生物科学以及航天医学等相关领域的新热点.  相似文献   

20.
Mechanisms by which weak electromagnetic fields may affect biological systems are of current interest because of their potential health effects. Lednev has proposed an ion parametric resonance hypothesis (Lednev, 1991, Bioelectromagnetics, 12:71-75), which predicts that when the ac, frequency of a combined dc-ac magnetic field equals the cyclotron frequency of calcium, the affinity of calcium for calcium-binding proteins such as calmodulin will be markedly affected. The present study evaluated Lednev's theory using two independent systems, each sensitive to changes in the affinity of calcium for calmodulin. One of the systems used was the calcium/calmodulin-dependent activation of myosin light chain kinase, a system similar to that previously used by Lednev. The other system monitored optical changes in the binding of a fluorescent peptide to the calcium/calmodulin complex. Each system was exposed to a 20.9 microT static field superimposed on a 20.9 microT sinusoidal field over a narrow frequency range centered at 16 Hz, the cyclotron frequency of the unhydrated calcium ion. In contrast to Lednev's predictions, no significant effect of combined dc-ac magnetic fields on calcium/calmodulin interactions was indicated in either experimental system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号