首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The counter-regulatory effect of adenosine, isoprenaline and selected cyclic AMP analogues on insulin-stimulated 3-O-methylglucose transport and insulin binding were studied in rat fat-cells. Isoprenaline alone had no consistent effect on glucose transport in the presence of maximally effective insulin concentrations. However, it decreased insulin binding by approx. 20% and increased EC50 (concn. giving 50% of maximal stimulation) for insulin from 8 +/- 1 to 17 +/- 2 mu units/ml. Adenosine deaminase (ADA) alone only exerted a slight effect, whereas isoprenaline and ADA in combination consistently decreased the maximal effect of insulin on glucose transport, decreased insulin binding by approx. 30% and markedly decreased insulin-sensitivity (EC50 61 +/- 8 mu units/ml). In cells from pertussis-toxin-treated animals, isoprenaline alone decreased the insulin response by approx. 75%, decreased insulin binding by approx. 45% and caused a marked rightward shift in the dose-response curve for insulin (EC50 103 +/- 34 mu units/ml). The importance of cyclic AMP for these effects was evaluated with the analogue N6-monobutyryl cyclic AMP, which is resistant to hydrolysis by the phosphodiesterase. The importance of phosphodiesterase activation by insulin was studied with 8-bromo cyclic AMP, which is an excellent substrate for this enzyme. N6-Monobutyryl cyclic AMP, in contrast with 8-bromo cyclic AMP, markedly impaired insulin-sensitivity (EC50 approx. 100 mu units/ml). However, the maximal effect of insulin was only slightly attenuated. In conclusion: (1) beta-adrenergic stimulation and cyclic AMP markedly alter insulin-sensitivity, but not responsiveness, mainly through post-receptor perturbations; (2) when cyclic AMP is increased phosphodiesterase activation by insulin is a critical step to elicit insulin action; (3) adenosine modulates the insulin-antagonistic effect of beta-adrenergic stimulation via Ni (inhibitory nucleotide-binding protein) through both cyclic-AMP-dependent and -independent mechanisms.  相似文献   

2.
Tumour-promoting phorbol esters have insulin-like effects on glucose transport and lipogenesis in adipocytes and myocytes. It is believed that insulin activates the glucose-transport system through translocation of glucose transporters from subcellular membranes to the plasma membrane. The aim of the present study was to investigate if phorbol esters act through the same mechanism as insulin on glucose-transport activity of rat adipocytes. We compared the effects of the tumour-promoting phorbol ester tetradecanoylphorbol acetate (TPA) and of insulin on 3-O-methylglucose transport and on the distribution of D-glucose-inhibitable cytochalasin-B binding sites in isolated rat adipocytes. Insulin (100 mu units/ml) stimulated 3-O-methylglucose uptake 9-fold, whereas TPA (1 nM) stimulated the uptake only 3-fold (mean values of five experiments, given as percentage of equilibrium reached after 4 s: basal 7 +/- 1.3%, insulin 60 +/- 3.1%, TPA 22 +/- 2.3%). In contrast, both agents stimulated glucose-transporter translocation to the same extent [cytochalasin B-binding sites (pmol/mg of protein; n = 7): plasma membranes, basal 6.2 +/- 1.0, insulin 13.4 +/- 2.0, TPA 12.7 +/- 2.7; low-density membranes, basal 12.8 +/- 2.1, insulin 6.3 +/- 0.9, TPA 8.9 +/- 0.7; high-density membranes, 6.9 +/- 1.1; insulin 12.5 +/- 1.0, TPA 8.1 +/- 0.9]. We conclude from these data: (1) TPA stimulates glucose transport in fat-cells by stimulation of glucose-carrier translocation; (2) insulin and TPA stimulate the carrier translocation to the same extent, whereas the stimulation of glucose uptake is 3-fold higher with insulin, suggesting that the stimulatory effect of insulin on glucose-transport activity involves other mechanisms in addition to carrier translocation.  相似文献   

3.
Lectins specific for D-mannose (concanavalin A), N-acetyl-D-glucosamine (wheat-germ agglutinin) or D-galactose (Ricinus communis agglutinin I) inhibited insulin binding and activated glucose transport in rat adipocytes [Cherqui, Caron, Capeau & Picard (1982) Mol. Cell. Endocrinol. 28, 627-643]. In the present investigation, the intracellular activities of insulin and lectins on lipogenesis and protein synthesis were studied under conditions where neither agent had an effect on membrane transport processes. (1) When glucose transport was rate-limiting (0.5 mM-glucose), insulin (0.8 ng/ml) and lectins (20 micrograms/ml) increased lipogenesis by 2.4-3-fold. (2) When passive diffusion of glucose was amplified (10 mM-glucose), insulin (0.8 ng/ml) and lectins (20 micrograms/ml) increased lipogenesis by 1.6-1.8-fold even in the presence of 50 microM-cytochalasin B, which completely blocked glucose transport. (3) Insulin (6 ng/ml), concanavalin A and wheat-germ agglutinin (40 micrograms/ml) stimulated the incorporation of L-[U-14C]leucine into fat-cell protein 1.5-fold but did not modify alpha-aminoisobutyric acid uptake or 14C-labelled protein degradation. (4) Peanut and soya-bean agglutinins (specific for O-glycosidically-linked oligosaccharides), known not to alter insulin binding, were ineffective. (5) Lectin effects were dose-dependent and were markedly inhibited by specific monosaccharides (50 mM). (6) Insulin and lectin maximal effects were not additive and were completely abolished by neuraminidase treatment of fat-cells (0.05 unit/ml). These data indicate involvement of surface sialylated glycoproteins of the complex N-linked type in the insulin stimulation of glucose and amino acid intracellular metabolic processes. They suggest, together with our previous results, that the transmission of the insulin signal for both membrane and intracellular effects occurs via glycosylated effector entities of, or closely linked to, the insulin-receptor complex.  相似文献   

4.
1. Short-term effects of lipolytic agents in the absence or in the presence of insulin on fatty acid biosynthesis have been examined, in terms of the control rate of [1-14C]acetate incorporation into labeled fatty acids in the presence of glucose, as stimulator of lipogenesis by generating NADPH for the process. 2. The relationship between lipogenesis and lipolysis in the absence or in the presence of insulin was compared with a variety of adenylate cyclase activators. 3. The data obtained reveal that a reciprocal relationship exists between lipogenesis and lipolysis. 4. The changes in the activity of hexose monophosphate shunt produced by activation or inhibition of lipogenic process has been studied. 5. The regulation of the hexose monophosphate shunt activity mainly by the intracellular fatty acyl-CoA concentration and NADPH/NADP ratio is discussed.  相似文献   

5.
Isolated muscle cells from adult rat heart were used to study the involvement of G-proteins in the regulation of the glucose transporter by insulin and isoprenaline. Efficient modification of G-protein functions was established by measuring isoprenaline-stimulated cyclic AMP production, viability and ATP content after treating the cells with cholera toxin and pertussis toxin for 2 h. Under these conditions cholera toxin decreased the stimulatory action of insulin on 3-O-methylglucose transport by 56%, but pertussis toxin had no effect. Basal transport was not affected by toxin treatment. Isoprenaline increased 3-O-methylglucose transport by 63%. This effect was not mimicked by dibutyryl cyclic AMP, but was completely blocked by cholera toxin. Streptozotocin-diabetes abolished isoprenaline action and decreased stimulation of transport by 64%. Concomitantly, cholera-toxin sensitivity of glucose transport was lost in cells from diabetic animals. This was paralleled by a large decrease (87 +/- 4%) in mRNA expression of the insulin-regulatable glucose transporter, as shown by Northern-blot analysis of RNA isolated from cardiomyocytes of diabetic rats. These data suggest a functional association between the insulin-responsive glucose transporter and a cholera-toxin-sensitive G-protein mediating stimulation by insulin and isoprenaline.  相似文献   

6.
The hypothesis that insulin action involves a membrane proteolytic step was further explored, by using isolated rat adipocytes and liver plasma membranes. (1) The maximal insulin stimulation of 2-deoxyglucose transport and lipogenesis in fat-cells was selectively inhibited (73-88%) by N alpha-p-tosyl-L-lysine chloromethyl ketone (Tos-Lys-CH2Cl; active-site inhibitor of trypsin; 30-125 microM), p-nitrophenyl p'-guanidinobenzoate (active-site inhibitor of serine proteinases; 30-125 microM) and p-tosyl-L-arginine methyl ester (arginine ester substrate analogue of proteinases; 1-2 mM), under conditions where neither the basal rate of each metabolic process nor insulin binding nor cellular ATP content were affected. In contrast, N-acetyl-L-alanyl-L-alanyl-L-alanine methyl ester (alanine ester substrate analogue of proteinases; 1-2 mM) was ineffective. (2) Endoproteinase Arg-C (0.25-40 micrograms/ml) exerted dose-dependent insulin-like effects on both 2-deoxyglucose transport and lipogenesis in fat-cells, whereas endoproteinase Lys-C (5-100 micrograms/ml) was ineffective. The maximal activation by endoproteinase Arg-C of both processes (200 and 177% of control values respectively) was shown to occur under conditions where membrane integrity (assessed by measurement of lactate dehydrogenase leakage and passive glucose diffusion) was preserved. This effect was inhibited by Tos-Lys-CH2Cl (125 microM) and was not additive with the maximal insulin effect. (3) Insulin (1-100 ng/ml) produced a dose-dependent increase in the trichloroacetic acid-soluble 125I radioactivity released after a 30 min incubation at 37 degrees C of 125I-labelled liver plasma membranes, but was ineffective on 125I-labelled bovine serum albumin. Insulin effects on both radio-labelled proteins were reproduced by wheat-germ agglutinin (20 micrograms/ml), an insulin mimicker shown to act through the insulin receptor. These data provide further evidence for the hypothesis that insulin bioeffects involve the activation of a membrane serine proteinase with arginine specificity.  相似文献   

7.
The ability of the insulin-induced phospho-oligosaccharide to stimulate amino acid transport was studied in isolated rat hepatocytes. At low alpha-aminoisobutyric acid concentrations (0.1 mM), both 100 nM-insulin and 10 microM-phospho-oligosaccharide doubled amino acid uptake after 2 h of incubation. This stimulation was prevented by 0.1 mM-cycloheximide or 5 micrograms of actinomycin D/ml, indicating that the phospho-oligosaccharide, like insulin, was acting via the synthesis of a high-affinity transport component. The effects of the phospho-oligosaccharide and of insulin were blocked by Ins2P (2.5 mM), but not by myo-inositol, inositol hexaphosphoric acid or several monosaccharides such as mannose, glucosamine and galactose. Both the temporal effect on amino acid entry and the extent of stimulation of this process by the phospho-oligosaccharide indicate that this molecule mimics, and may mediate, some of the long-term actions of insulin. However, the effects of phospho-oligosaccharide and insulin were not exactly the same, since the effect of insulin, but not of the phospho-oligosaccharide, was additive with that of glucagon.  相似文献   

8.
A modified procedure for preparation of hamster adipocytes by collagenase digestion under carefully controlled conditions has been developed. The adipocytes were 4- to 8-fold more sensitive to catecholamine stimulation of lipolysis than cells prepared by a commonly used method (Hittelman, K.J., Wu, C.F. and Butcher, R.W. (1973) Biochim. Biophys. Acta 304, 188-196) and also more sensitive to the anti-lipolytic action of insulin. The effects of insulin on lipogenesis, measured as [3H]glucose conversion to cell lipids, and on catecholamine-stimulated lipolysis were compared under identical conditions with the same cell batch. Isoprenaline-stimulated lipolysis was found to be half-maximally inhibited by an insulin concentration 8-fold lower than that stimulating lipogenesis to a corresponding extent (half-maximal effects at insulin concentrations of 40 vs. 300 pM). A similar difference was found when cells had been stimulated with adrenaline instead of isoprenaline.  相似文献   

9.
Incubation of platelets from normal volunteers, who had not taken any medication at least for 2 weeks, with insulin (200 mu units/ml), resulted in the inhibition of the potentiation of ADP-induced platelet aggregation in the presence of (-)-epinephrine by 50-60% when compared with the control. The inhibitory effect of insulin was not related to the increased cyclic AMP level or decreased thromboxane A2 synthesis in these cells. It was found that the treatment of platelets with insulin decreased alpha 2 adrenergic receptors number of these cells from 413 +/- 92/platelet to 206 +/- 84/platelet as determined by Scatchard analysis of [3H]yohimbine binding. The affinity of the receptors (1.05 +/- 0.02 nM) remained essentially unchanged due to the treatment of platelets with the hormone (1.40 +/- 0.60 nM).  相似文献   

10.
In order to study the oeffect of somatostatin on the endocrine pancreas directly, islets isolated from rat pancreas by collagenase were incubated for 2 hrs 1) at 50 and 200 mg/100 ml glucose in the absence and presence of somatostatin (1, 10 and 100 mg/ml) and2) at 200 mg/100 ml glucose together with glucagon (5 mug/ml), with or without somatostatin (100 ng/ml). Immunologically measurable insulin was determined in the incubation media at 0, 1 and 2 hrs. Insulin release was not statistically affected by any concentration stomatostatin. On the other hand, somatostatin exerted a significant inhibitory action on glucagon-potentiated insulin secretion (mean +/- SEM, mu1/2 hrs/10 islets: glucose and glucagon: 1253 +/- 92; glucose, glucagon and somatostatin: 786 +/- 76). The insulin output in th epresence of glucose, glucagon and somatostatin was also significantly smaller than in thepresence of glucose alone (1104 +/- 126) or of glucose and somatostatin (1061 +/- 122). The failure of somatostatin to affect glucose-stimulated release of insulin from isolated islets contrasts its inhibitory action on insulin secretion as observed in the isolated perfused pancreas and in vivo. This discrepancy might be ascribed to the isolation procedure using collagenase. However, somatostatin inhibited glucagon-potentiated insulin secretion in isolated islets which resulted in even lower insulin levels than obtained in the parallel experiments without glucagon. It is concluded that the hormone of the alpha cells, or the cyclic AMP system, might play a part in the machanism of somatostatin-induced inhibition of insulin release from the beta-cell.  相似文献   

11.
A Shisheva  Y Shechter 《Biochemistry》1992,31(34):8059-8063
We report here that quercetin, a naturally occurring bioflavonoid, is an effective blocker of insulin receptor tyrosine kinase-catalyzed phosphorylation of exogenous substrate. The ID50 was estimated to be 2 +/- 0.2 microM in cell-free experiments, using a partially purified insulin receptor and a random copolymer of glutamic acid and tyrosine as a substrate. Insulin-stimulated autophosphorylation of the receptor itself was not blocked by quercetin (up to 500 microM). In intact rat adipocytes, quercetin inhibited insulin-stimulating effects on glucose transport, oxidation, and its incorporation into lipids. Inhibition of lipogenesis (50%) occurred at 47 +/- 4 microM, whereas full inhibition was evident at 110 +/- 10 microM quercetin. In contrast, the effect of insulin in inhibiting lipolysis remained unaltered in quercetin-treated adipocytes. The inhibitor was devoid of general adverse cell affects. Basal activities and the ability of lipolytic agents to stimulate lipolysis were not affected. Inhibition by quercetin enabled us to evaluate which insulinomimetic agents are dependent on tyrosine phosphorylation of endogenous substrates for stimulating glucose metabolism. Quercetin blocked lipogenesis mediated by insulin, wheat germ agglutinin, and concanavalin A. The lipogenic effect of Zn2+ and Mn2+ was partially blocked, whereas that of vanadate was not affected at all.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Summary The effects of theophylline on insulin receptors and insulin action in isolated rat adipocytes were studied. Theophylline reduced insulin binding by a decrease of receptor affinity. As concentration-response curves revealed, the effect was paralleled by a reduction of the cellular ATP content. Basal as well as insulin-stimulated glucose transport (2-deoxyglucose and 3-O-methylglucose uptake) were inhibited by much smaller theophylline concentrations (0.15–0.6 mM ) than those necessary to reduce insulin binding and to lower ATP levels (1–4.8 mM), or to stimulate lipolysis (0.3-2.4 mM). Insulin fully antagonized the effect of theophylline on lipolysis but failed to reverse the inhibition of glucose transport completely. The results suggest that (a) theophylline impairs insulin action at a post-receptor level and, at higher concentrations, by a decrease of receptor binding, (b) the reduction of insulin receptor affinity probably reflects ATP depletion of the adipocyte, and (c) the xanthine inhibits glucose transport independently from its effects on lipolysis.  相似文献   

13.
Some of the actions of insulin may be mediated by the intracellular generation of an inositol phosphate glycan that modulates the activities of certain metabolic enzymes. The actions of this molecule were evaluated on glucose utilization in intact rat adipocytes. The inositol glycan led to the dose-dependent stimulation of glucose oxidation and lipogenesis. The extent of stimulation was similar to that observed for insulin. The stimulation of lipogenesis was seen only at high concentrations of glucose, suggesting regulation of processes distal to glucose uptake. The effects of the inositol glycan on intact adipocytes were specifically attenuated with inositol monophosphate in a dose dependent manner. These results further support a role for this substance as a second messenger for some of the actions of insulin, and indicate that the cellular uptake of the inositol glycan may occur by a specific transport system.  相似文献   

14.
The insulin effect on glucose uptake is not sufficiently explained by a simple glucose-carrier translocation model. Recent studies rather suggest a two-step model of carrier translocation and carrier activation. We used several pharmacological tools to characterize the proposed model further. We found that inositol phosphate (IP)-oligosaccharides isolated from the drug Actovegin, as well as the alkaloid vinblastine, show a partial insulin-like effect on glucose-transport activity of fat-cells (3-O-methylglucose uptake, expressed as % of equilibrium value per 4 s: basal 5.8%, insulin 59%, IP-oligosaccharides 30%, vinblastine 29%) without inducing carrier translocation. On the other hand, two newly developed anti-diabetic compounds (alpha-activated carbonic acids, BM 130795 and BM 13907) induced carrier translocation to the same extent as insulin and phorbol esters [cytochalasin-B-binding sites in plasma membranes: basal 5 pmol/mg of protein, insulin 13 pmol/mg of protein, TPA (12-O-tetradecanoylphorbol 13-acetate) 11.8 pmol/mg of protein, BM 130795 10.8 pmol/mg of protein], but produce also only 40-50% of the insulin effect on glucose-transport activity (basal 5.8%, insulin 59%, TPA 23%, BM 130795 35%). Almost the full insulin effect was mimicked by a combination of phorbol esters and IP-oligosaccharides (basal 7%, insulin 50%, IP-oligosaccharides 30%, TPA 23%, IP-oligosaccharides + TPA 45%). None of these substances stimulated insulin-receptor kinase in vitro or in vivo, suggesting a post-kinase site of action. The data confirm the following aspects of the proposed model: (1) carrier translocation and carrier activation are two independently regulated processes; (2) the full insulin effect is mimicked only by a simultaneous stimulation of carrier translocation and intrinsic carrier activity, suggesting that insulin acts through a synergism of both mechanisms; (3) IP-oligosaccharides might be involved in the transmission of a stimulatory signal on carrier activity.  相似文献   

15.
Genistein, an isoflavone putative tyrosine kinase inhibitor, was used to investigate the coupling of insulin receptor tyrosine kinase activation to four metabolic effects of insulin in the isolated rat adipocyte. Genistein inhibited insulin-stimulated glucose oxidation in a concentration-dependent manner with an ID50 of 25 micrograms/ml and complete inhibition at 100 micrograms/ml. Genistein also prevented insulin's (10(-9) M) inhibition of isoproterenol-stimulated lipolysis with an ID50 of 15 micrograms/ml and a complete effect at 50 micrograms/ml. The effect of genistein (25 micrograms/ml) was not reversed by supraphysiological (10(-7) M) insulin levels. In contrast, genistein up to 100 micrograms/ml had no effect on insulin's (10(-9) M) stimulation of either pyruvate dehydrogenase or glycogen synthase activity. We determined whether genistein influenced insulin receptor beta-subunit autophosphorylation or tyrosine kinase substrate phosphorylation either in vivo or in vitro by anti-phosphotyrosine immunoblotting. Genistein at 100 micrograms/ml did not inhibit insulin's (10(-7) M) stimulation of insulin receptor tyrosine autophosphorylation or tyrosine phosphorylation of the cellular substrates pp185 and pp60. Also, genistein did not prevent insulin-stimulated autophosphorylation of partially purified human insulin receptors from NIH 3T3/HIR 3.5 cells or the phosphorylation of histones by the activated receptor tyrosine kinase. In control experiments using either NIH 3T3 fibroblasts or partially purified membranes from these cells, genistein did inhibit platelet-derived growth factor's stimulation of its receptor autophosphorylation. These findings indicate the following: (a) Genistein can inhibit certain responses to insulin without blocking insulin's stimulation of its receptor tyrosine autophosphorylation or of the receptor kinase substrate tyrosine phosphorylation. (b) In adipocytes genistein must block the stimulation of glucose oxidation and the antilipolytic effects of insulin at site(s) downstream from the insulin receptor tyrosine kinase. (c) The inhibitory effects of genistein on hormonal signal transduction cannot necessarily be attributed to inhibition of tyrosine kinase activity, unless specifically demonstrated.  相似文献   

16.
Maternal insulin and placental 3-O-methyl glucose transport   总被引:1,自引:0,他引:1  
The effects of insulin in the maternal circulation on the placental clearance of 3-O-methyl glucose were investigated in 7 animals in the presence of a constant maternal glucose concentration. While maternal insulin concentration changed from 12 +/- 4 to 175 +/- 33 mu Units/ml, the placental clearance remained constant at 16.2 +/- 1.2 (control) and 15 +/- 1.3 ml/min per kg fetus under the influence of the insulin. To test the secondary hypothesis that in the control condition the hexose transport system was saturated, we performed a further series of experiments in 6 fasted animals. In these animals the control maternal plasma insulin concentration was 2 +/- 0.3 mu Units/ml and after the infusion of insulin it increased to 562 +/- 26 mu Units/ml. Under conditions of constant maternal and fetal plasma glucose concentrations, this massive elevation of plasma insulin did not change the placental clearance of 3MeG which was 15.2 +/- 1.6 in the control condition and 13.3 +/- ml/min per kg under the influence of high insulin. We conclude that maternal insulin ranging from 2 mu Units/ml to supraphysiologic doses does not effect a physiologically significant change in placental hexose transfer. Placental glucose transfer can probably therefore, be changed only be changing the concentration of glucose in the maternal and fetal plasma.  相似文献   

17.
Addition of vasopressin (100 nM) to rat hepatocytes prelabelled with [3H]inositol stimulated the production of inositol phosphates in the presence of 20 mM Li+. Preincubation of hepatocytes with insulin (50 nM) or glucagon (10 nM) had no significant effect alone but enhanced the effects of vasopressin after a lag period of at least 1 min. The effects of insulin and glucagon appeared additive in this respect. Insulin also enhanced the norepinephrine-mediated stimulation of inositol phosphate accumulation. The enhancement by insulin of the effects of vasopressin required at least 0.5-5 nM insulin and did not involve changes in [3H]inositol lipid labelling or IP3 phosphatase activity. The effect of insulin appeared insensitive to prior treatment of hepatocytes with pertussis toxin (200 ng/ml for 18-24 h) or cholera toxin (100 ng/ml for 3-4 h). The glucagon enhancement of the effects of vasopressin was not affected by pertussis toxin but was mimicked by cholera toxin. The response of hepatocytes to vasopressin in the absence of Li+ was smaller and more transient. Under these conditions a 5 min prior incubation with insulin inhibited the stimulation by vasopressin of inositol phosphate accumulation. A similar inhibitory effect of prior insulin exposure on the transient activation by vasopressin of exogenous phosphatidylinositol 4,5-bisphosphate breakdown by hepatocyte homogenates was also seen. These data indicate that insulin, although having no effect on basal inositol phosphate accumulation, can either enhance or antagonise the effects of vasopressin in primary rat liver hepatocyte cultures depending on the experimental conditions.  相似文献   

18.
Exercise increases permeability of muscle to glucose. Normally, the effects of exercise and a maximal insulin stimulus on glucose transport are additive. However, the combined effect on rat epitrochlearis muscle permeability to 3-O-methylglucose (3-MG) of a maximal insulin stimulus followed by in vitro contractile activity of 1.24 +/- 0.06 mumol.10 min-1.ml intracellular water-1 was no greater than that of either stimulus alone. We found that this absence of an additive effect was caused by prolonged exposure to an unphysiologically high insulin concentration (20,000 microU/ml for 60 min), which, in addition to stimulating glucose transport, appears to prevent further increases in permeability to glucose. When the treatments were reversed and muscles were first stimulated to contract and then incubated with 20,000 microU/ml insulin, 3-MG uptake (mumol.10 min-1.ml intracellular water-1) increased from a control value of 0.26 +/- 0.03 to 1.80 +/- 0.15, compared with 1.04 +/- 0.06 for contractile activity alone, 1.21 +/- 0.08 for insulin, and 1.88 +/- 0.11 for exercise (swimming) plus insulin. Swimming plus in vitro contractile activity did not have a greater effect than contractile activity alone. Our results provide evidence that 1) the effect of exercise on muscle permeability to glucose is mediated solely by a process associated with contractile activity, and 2) it is advisable to avoid the use of unphysiologically high insulin concentrations in studies designed to elucidate in vivo actions of insulin.  相似文献   

19.
This essay attempts to summarize some of the best evidence for the role of inositol trisphosphate as a second messenger in signal transduction processes. The following aspects are addressed in the essay: (a) The synthesis of inositol trisphosphate and other inositol lipids, (b) Receptor-phosphatidylinositol bisphosphate phospholipase C coupling and the N-ras protooncogene, (c) Inositol trisphosphate and intracellular calcium, (d) Cell growth and oncogenes, (e) Receptors linked to the phosphatidylinositol cycle, (f) Phototransduction and (g) Interactions between inositol trisphosphate and other second messengers.Abbreviations Cyclic AMP Adenosine 3,5-cyclic monophosphate - Cyclic GMP Guanosine 3,5-cyclic monophosphate - DG sn, 1,2-Diacylglycerol - EGF Epidermal growth factor - GDP Guanosine diphosphate - GTP Guanosine triphosphate - IP Inositol 1-monophosphate - IP2 Inositol 1,4-diphosphate - IP3 Inositol 1,4,5-trisphosphate - PA Phosphatidic acid - PDGF Platelet-derived growth factor - PI Phosphatidylinositol - PIP Phosphatidylinositol 4-monophosphate - PIP2 Phosphatidylinositol 4,5-bisphosphate - PIP3 Phosphatidylinositol 3,4,5-trisphosphate - PLC Phospholipase C  相似文献   

20.
We have previously shown in primary cultured rat adipocytes that insulin acts at receptor and multiple postreceptor sites to decrease insulin's subsequent ability to stimulate glucose transport. To examine whether D-glucose can regulate glucose transport activity and whether it has a role in insulin-induced insulin resistance, we cultured cells for 24 h in the absence and presence of various glucose and insulin concentrations. After washing cells and allowing the glucose transport system to deactivate, we measured basal and maximally insulin-stimulated 2-deoxyglucose uptake rates (37 degrees C) and cell surface insulin binding (16 degrees C). Alone, incubation with D-glucose had no effect on basal or maximal glucose transport activity, and incubation with insulin, in the absence of glucose, decreased maximal (but not basal) glucose transport rates only 18% at the highest preincubation concentration (50 ng/ml). However, in combination, D-glucose (1-20 mM) markedly enhanced the long-term ability of insulin (1-50 ng/ml) to decrease glucose transport rates in a dose-responsive manner. For example, at 50 ng/ml preincubation insulin concentration, the maximal glucose transport rate fell from 18 to 63%, and the basal uptake rate fell by 89%, as the preincubation D-glucose level was increased from 0 to 20 mM. Moreover, D-glucose more effectively promoted decreases in basal glucose uptake (Ki = 2.2 +/- 0.4 mM) compared with maximal transport rates (Ki = 4.1 +/- 0.4 mM) at all preincubation insulin concentrations (1-50 ng/ml). Similar results were obtained when initial rates of 3-O-methylglucose uptake were used to measure glucose transport. D-glucose, in contrast, did not influence insulin-induced receptor loss. In other studies, D-mannose and D-glucosamine could substitute for D-glucose to promote the insulin-induced changes in glucose transport, but other substrates such as L-glucose, L-arabinase, D-fructose, pyruvate, and maltose were without effect. Also, non-metabolized substrates which competitively inhibit D-glucose uptake (3-O-methylglucose, cytochalasin B) blocked the D-glucose plus insulin effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号