共查询到20条相似文献,搜索用时 15 毫秒
1.
An open reading frame encoding an 88 amino acid protein was present downstream of the previously characterized endolysin ofStreptomyces aureofaciens phage μ1/6. Structural analysis of its sequence revealed features characteristic for holin. This open reading frame encoding
the putative holin was amplified by polymerase chain reaction and cloned into the expression vector pET-21d(+). Synthesis
of the holin-like protein resulted in bacterial cell death but not lysis. Theholμ1/6 gene was able to complement the defective λS allele in the nonsuppressingEscherichia coli HB101 strain to produce phage progeny. This fact suggests that the proteins encoded by both phage genes have analogous function,i.e. the streptomycete holin induces nonspecific lesions in the cytoplasmic membrane, through which the λ endolysin gains an access
to its substrate, the cell wall. The concomitant expression of bothS. aureofaciens holμ1/6 and λ endolysin inE. coli resulted in abrupt cell lysis. This result provided further evidence that the product ofholμ1/6 gene is a holin.
This work was supported by the VEGA grant of theSlovak Academy of Sciences no. 2/5070/25 and grant of theMinistry of Agriculture of the Slovak Republic no. 2003 5P27/0208 E02. 相似文献
2.
Background
Thymosin α1 (Tα1), a 28-amino acid N α -acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining N α -acetylation. In this study, we describe a novel production process for N α -acetylated Tα1 in Escherichia coli. 相似文献3.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed
in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under
control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially
in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of
the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically
active lipase from a basidiomycete fungus. 相似文献
4.
Process development for production of recombinant human interferon-γ expressed in<Emphasis Type="Italic"> Escherichia coli</Emphasis> 总被引:1,自引:0,他引:1
Khalilzadeh R Shojaosadati SA Maghsoudi N Mohammadian-Mosaabadi J Mohammadi MR Bahrami A Maleksabet N Nassiri-Khalilli MA Ebrahimi M Naderimanesh H 《Journal of industrial microbiology & biotechnology》2004,31(2):63-69
A simple fed-batch process was carried out using constant and variable specific growth rates for high-cell-density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-(hIFN-). The feeding rate was adjusted to achieve an appropriate specific growth rate. The dissolved oxygen level was maintained at 20–30% of air saturation by control of airflow and stirrer speed and, where necessary, by enrichment of inlet air with pure oxygen. Glucose was the sole source of carbon and energy and was provided by following a simple exponential feeding rate. The final cell density in the fed-batch fermentation with constant and variable specific growth rate feeding strategies was ~100 g dry cell wt l–1 after 36 and 20 h, respectively. The final specific yield and overall productivity of recombinant hIFN- in the variable specific growth rate strategy were 0.35 g rHu-IFN- g–1 dry cell wt and 0.9 g rHu-IFN- l–1 h–1, respectively. A new chromatographic purification procedure involving anion exchange and cation exchange chromatographies was developed for purification of rHu-IFN- from inclusion bodies. The established purification process is reproducible and the total recovery of rHu-IFN- was ~30% (100 mg rHu-IFN- g–1 dry cell wt). The purity of the rHu-IFN- was determined using HPLC. Sterility, pyrogenicity, and DNA content tests were conducted to assure the absence of toxic materials and other components of E. coli in the final product. The final purified rHu-IFN- has a specific antiviral activity of ~2×107 IU/mg protein, as determined by viral cytopathic effect assay. These results certify the product for clinical purposes. 相似文献
5.
6.
Rhodococcus equi is an intracellular pathogen of macrophages, causing disease in young foals, humans, and sporadically other animals. Although R. equi is easy to grow and manipulate, the analysis of virulence is hampered by a lack of molecular tools. This paper describes the development of a number of versatile plasmids for use in R. equi. Plasmids pREV2 and pREV5 use origins of replication derived from the Mycobacterium fortuitum plasmids pAL5000 and pMF1. These plasmids and their derivatives are compatible in R. equi, allowing their use for analysis of gene function in trans. The stability of these plasmids in R. equi in the absence of selection for the plasmid borne antibiotic resistance markers, and their integrity following passage through Escherichia coli and R. equi was determined. 相似文献
7.
We have investigated nucleotide polymorphism at theβ-esterase gene cluster including theEst-6 gene andψEst-6 putative pseudogene in four samples ofDrosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South
America (Venezuela). A complex haplotype structure is revealed in bothEst-6 andψEst-6. Total nucleotide diversity is twice inψEst-6 as inEst-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within theβ-esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected withinEst-6 and, to a much greater extent, withinyEst-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for theβ-esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck
and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism
in theb-esterase gene cluster. However there are some ’footprints’ of directional and balancing selection shaping specific distribution of
nucleotide polymorphism within the cluster. Intergenic epistatic selection betweenEst-6 andψEst-6 may play an important role in the evolution of theβ-esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction
between the functional gene and the putative pseudogene.Est-6 andyEst-6 may represent an indivisible intergenic complex (‘intergene’) in which each single component (Est-6 orψEst-6) cannot separately carry out the full functional role. 相似文献
8.
Recombinant Zantedeschia aethiopica agglutinin (ZAA) was expressed in Escherichia coli as N-terminal His-tagged fusion. After induction with isopropylthio-β-d-galactoside (IPTG), the recombinant ZAA was purified by metal-affinity chromatography. The purified ZAA protein was applied
in anti-fungal assay and the result showed that recombinant ZAA had anti-fungal activity towards leaf mold (Fulvia fulva), one of the most serious phytopathogenic fungi causing significant yield loss of crops. This study suggests that ZAA could
be an effective candidate in genetic engineering of plants for the control of leaf mold. 相似文献
9.
10.
Akhilesh Kumar Amrita Chakraborty Srijani Ghanta Sharmila Chattopadhyay 《Plant Cell, Tissue and Organ Culture》2009,96(2):117-126
Morphologically identical transgenic mint (Mentha arvensis L.) with bacterial glutathione synthetase gene has been developed. Transformed plants were obtained by co-cultivation of
leaf disks with Agrobacterium tumefaciens strain LBA 4404 harbouring a binary vector pCAMBIA-CpGS that carried E. coli glutathione synthetase (GS), β-glucuronidase as reporter gene and nptII as selective marker gene for kanamycin resistance. Using a constitutive double CaMV 35S promoter and an rbcS transit peptide, we successfully addressed CpGS to the chloroplasts through pJIT 117 vector. Preculture and the presence of AS in the co-cultivation medium played a significant
role in enhancing transformation frequency. The highest transformation frequency was achieved with MS selection medium supplemented
with 25% coconut water, 1.12 mg l−1 BAP, 0.2 mg l−1 NAA, 50 mg l−1 kanamycin and 125 mg l−1 cefotaxime. Robust rooting of regenerated shoots was obtained in half-strength liquid MS medium containing 0.2 mg l−1 NAA and 50 mg l−1 kanamycin. The presence and expression of transgenes in transgenics (T0) was evidenced by GUS histoenzymatic assay, PCR and RT-PCR analysis of nptII and the gene of interest, i.e., GS of putative transgenic leaves. Chromosomal integration of GS gene was confirmed by Southern blot analysis. Transgenic plants were successfully acclimatized in the greenhouse. An overall
transformation frequency of 15% was achieved in approximately 3 months of time period. These results are discussed in relation
to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.
Akhilesh Kumar and Amrita Chakraborty contributed equally. 相似文献
11.
Giuliano M Schiraldi C Marotta MR Hugenholtz J De Rosa M 《Applied microbiology and biotechnology》2004,64(6):829-832
The industrial potential to use extreme thermophilic microorganisms and their enzymes lies in applications in which the temperature cannot be adjusted (cooled) at will. The production of enzymes from wild-type thermophiles is very low, therefore, for industrial applications, it is necessary to use recombinant microorganisms. In this paper, the cloning of a heat-stable -glucosidase from Sulfolobus solfataricus using lactic acid bacteria as expression system is reported. The extremophilic -glucosidase was cloned in Lactococcus lactis and correctly folded despite being expressed at a lower temperature. The recombinant cells were assayed for enzyme residual activity at 75 °C in order to analyze the direct use of whole cells as biocatalysts. Maximum activity corresponded to 40 U/l in static cultures. The protein yield was further improved by optimizing fermentation and reached 600 U/l in batch mode. Microfiltration led to an even higher enzyme production of 850 U/l as a result of increased biomass. The overall production of -glucosidase using the engineered L. lactis strain in microfiltration fermentation is 1,000-fold higher than obtained using the wild-type. 相似文献
12.
María D. Frade-Pérez Arturo Hernández-Cervantes Arturo Flores-Carreón Héctor M. Mora-Montes 《Antonie van Leeuwenhoek》2010,98(3):291-298
Protein glycosylation is one of the most common post-translational modifications present in the eukaryotic cell. The N-linked glycosylation is a biosynthetic pathway where an oligosaccharide is added to asparagine residues within the endoplasmic
reticulum. Upon addition of the N-linked glycan to nascent proteins, α-glucosidase I removes the outermost α1,2-glucose unit from the N-linked core Glc3Man9GlcNAc2. We have previously demonstrated that the endoplasmic reticulum α-glucosidase I is required for normal cell wall composition,
and virulence of the human pathogen Candida albicans. In spite of the importance of this enzyme for normal cell biology, little is known about its structure and the amino acids
participating in enzyme catalysis. Here, a DNA fragment corresponding to the 3′-end fragment of C. albicans
CWH41, the encoding gene for α-glucosidase I, was expressed in a bacterial system and the recombinant peptide showed α-glucosidase
activity, despite lacking 419 amino acids from the N-terminal end. The biochemical characterisation of the recombinant enzyme
showed that presence of hydroxyl groups at carbons 3 and 6, and orientation of hydroxyl moiety at C-2 are important for glucose
recognition. Additionally, results suggest that cysteine rather than histidine residues are involved in the catalysis by the
recombinant enzyme. 相似文献
13.
Background
Cyclodextrin glycosyltransferases (CGTases) catalyze the synthesis of cyclodextrins, which are circular α-(1,4)-linked glucans used in many applications in the industries related to food, pharmaceuticals, cosmetics, chemicals, and agriculture, among others. Economic use of these CGTases, particularly γ-CGTase, requires their efficient production. In this study, the effects of chemical chaperones, temperature and inducers on cell growth and the production of soluble γ-CGTase by Escherichia coli were investigated.Results
The yield of soluble γ-CGTase in shake-flask culture approximately doubled when β-cyclodextrin was added to the culture medium as a chemical chaperone.When a modified two-stage feeding strategy incorporating 7.5 mM β-cyclodextrin was used in a 3-L fermenter, a dry cell weight of 70.3 g·L??1 was achieved. Using this cultivation approach, the total yield of γ-CGTase activity (50.29 U·mL??1) was 1.71-fold greater than that observed in the absence of β-cyclodextrin (29.33 U·mL??1).Conclusions
Since β-cyclodextrin is inexpensive and nontoxic to microbes, these results suggest its universal application during recombinant protein production. The higher expression of soluble γ-CGTase in a semi-synthetic medium showed the potential of the proposed process for the economical production of many enzymes on an industrial scale.14.
15.
Dobrindt U Emödy L Gentschev I Goebel W Hacker J 《Molecular genetics and genomics : MGG》2002,267(3):370-379
16.
Bimal Kumar Ghimire Eun Soo Seong Jung Dae Lim Kweon Heo Myong Jo Kim Ill-Min Chung John A. Juvik Chang Yeon Yu 《Plant Cell, Tissue and Organ Culture》2008,95(3):265-274
Efficient transformation of leaf disc-derived callus of Codonopsis lanceolata was obtained using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector, pYBI121, that carries the neomycin phosphotransferase (npt II) gene as a selectable marker. The green shoots recovered from agroinfected explants on selection medium (containing 0.1 mg/l
α-naphthaleneacetic acid (NAA), 1 mg/l 6-benzylaminopurine (BAP), 100 mg/l kanamycin, and 250 mg/l cefotaxime) were rooted
on Murashige and Skoog (MS) medium supplemented with 2 mg/l IBA and 10 mg/l kanamycin. To optimize the transformation conditions,
several factors were assessed, including the co-cultivation period, the duration of pre- and post-culture in darkness and
light, the kanamycin concentration, and the Agrobacterium densities. We produced transgenic Codonopsis lanceolata overexpressing γ-tocopherol methyltransferase (γ-TMT) by this protocol. Moreover, the α-tocopherol content of the plants was enhanced by the overexpression of this gene.
Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work. 相似文献
17.
We performed detailed phenotypic analysis of the isw2 delta strains of the W303 genetic background and compared its results with those obtained previously in BY-derived genetic background. Shmoolike morphology was observed in the isw2 delta strain of alpha-mating type of the BY strains, but not in its W303-derived counterpart. On the other hand, derepression of a-specific genes in the isw2 delta (MAT alpha) strain was observed in both genetic backgrounds, although to a different extent. Unlike in BY-derived strain hyperactivation of the Ras2/cAMP pathway reduced invasiveness of the isw2 delta strain (MAT alpha) of the W303 background. Sensitivity to Calcofluor White indicating a cell wall-integrity defect was significantly increased in the isw2 delta strains of the W303 background in contrast to BY-derived strains. Our data indicate that the effects of the isw2 deletion strongly depend on the background in which the deletion, is made. 相似文献
18.
Nathaniel Liddy Peter E. Molloy Alan D. Bennett Jonathan M. Boulter Bent K. Jakobsen Yi Li 《Molecular biotechnology》2010,45(2):140-149
Previously, we have described the use of phage display to generate high affinity disulfide bond-linked T cell receptors (TCRs).
The affinities of the mutant TCRs were analysed after refolding of separately expressed α and β chains from Escherichia coli inclusion bodies. This approach is only suitable for the analysis of small numbers of TCR variants. An attractive alternative
would be soluble expression within the bacterial periplasm, but the generic production of TCRs within the E. coli periplasm has so far not proved successful. Here we show that functional, soluble TCR can be produced within the cytoplasm
of trxB gor mutant E. coli strains, with maximum yields of 3.4 mg/l. We also investigated the effect of coexpressing the folding modulators Skp and
DsbC finding that the TCR expression levels were largely unaffected by these chaperones. Importantly, we demonstrated that
the amount of protein purified from 50 ml starter cultures was sufficient to show functionality of the TCR by specific antigen
binding in both ELISA and surface plasmon resonance (SPR) assays. This TCR production method has the potential to allow rapid
and medium throughput analysis of affinity-matured TCRs selected from TCR phage display libraries. 相似文献
19.
Nadiawati Alias Nor Muhammad Mahadi Abdul Munir Abdul Murad Farah Diba Abu Bakar Nik Azmi Nik Mahmood Rosli Md Illias 《World journal of microbiology & biotechnology》2009,25(4):561-572
A gene encoding endochitinase from Trichoderma virens UKM-1 was cloned and expressed in E. coli BL21 (DE3). Both the endochitinase gene and its cDNA sequences were obtained. The endochitinase gene encodes 430 amino acids
from an open reading frame comprising of 1,690 bp nucleotide sequence with three introns. The endochitinase was expressed
as soluble and active enzyme at 20°C when induced with 1 mM IPTG. Maximum activity was observed at 4 h of post-induction time.
SDS-PAGE showed that the purified endochitinase exhibited a single band with molecular weight of 42 kDa. Biochemical characterization
of the enzyme displayed a near neutral pH characteristic with an optimum pH at 6.0 and optimum temperature at 50°C. The enzyme
is stable between pH 3.0–7.0 and is able to retain its activity from 30 to 60°C. The presence of Mg2+ and Ca2+ ions increased the enzyme activity up to 20%. The purified enzyme has a strong affinity towards colloidal chitin and low
effect on ethyl cellulose and D-cellubiose which are non-chitin related substrates. HPLC analysis from the chitin hydrolysis
showed the release of (GlcNAc)3, (GlcNAc)2 and GlcNAc, in which (GlcNAc)2 was the main product. 相似文献
20.
Setlow B Cabrera-Hernandez A Cabrera-Martinez RM Setlow P 《Archives of microbiology》2004,181(1):60-67
Four aryl-phospho--d-glucosidases were identified in Bacillus subtilis by using 4-methylumbelliferyl-phospho--d-glucopyranoside as a substrate. Two of these enzymes are the products of the bglA and bglH genes, previously suggested to encode aryl-phospho--d-glucosidases, while the other enzymes are encoded by the yckE and ydhP genes. Together, these four genes account for >99.9% of the glucosidase activity in B. subtilis on aryl-phospho--d-glucosides. yckE was expressed at a low and constant level during growth, sporulation, and spore germination, and was not induced by aryl--d-glucosides. ydhP was also not induced by aryl--d-glucosides. However, while ydhP was expressed at only a very low level in exponential-phase cells and germinating spores, this gene was expressed at a higher levels upon entry into the stationary phase of growth. Strains lacking yckE or ydhP exhibited no defects in growth, sporulation, or spore germination or in growth on aryl--d-glucosides. However, a strain lacking bglA, bglH and yckE grew poorly if at all on aryl--d-glucosides as the sole carbon source.Abbreviations
MU
4-Methylumbelliferone
-
MUG
4-Methylumbelliferyl--d-glucopyranoside
-
MUGal
4-Methylumbelliferyl--d-galactopyranoside
-
MUG-P
4-Methylumbelliferyl--d-glucopyranoside-6-phosphate 相似文献