首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication-dependent histone mRNAs are the only eukaryotic cellular mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. The 3′ end of histone mRNA is required for histone mRNA translation, as is the stem-loop binding protein (SLBP), which binds the 3′ end of histone mRNA. We have identified five conserved residues in a 15-amino-acid region in the amino-terminal portion of SLBP, each of which is required for translation. Using a yeast two-hybrid screen, we identified a novel protein, SLBP-interacting protein 1 (SLIP1), that specifically interacts with this region. Mutations in any of the residues required for translation reduces SLIP1 binding to SLBP. The expression of SLIP1 in Xenopus oocytes together with human SLBP stimulates translation of a reporter mRNA ending in the stem-loop but not a reporter with a poly(A) tail. The expression of SLIP1 in HeLa cells also stimulates the expression of a green fluorescent protein reporter mRNA ending in a stem-loop. RNA interference-mediated downregulation of endogenous SLIP1 reduces the rate of translation of endogenous histone mRNA and also reduces cell viability. SLIP1 may function by bridging the 3′ end of the histone mRNA with the 5′ end of the mRNA, similar to the mechanism of translation of polyadenylated mRNAs.  相似文献   

2.
Translation of most eukaryotic mRNAs and many viral RNAs is enhanced by their poly(A) tails. Hepatitis C virus (HCV) contains a positive-stranded RNA genome which does not have a poly(A) tail but has a stretch of 98 nucleotides (X region) at the 3′-untranslated region (UTR), which assumes a highly conserved stem-loop structure. This X region binds a polypyrimidine tract-binding protein (PTB), which also binds to the internal ribosome entry site (IRES) in HCV 5′-UTR. These RNA-protein interactions may regulate its translation. We generated a set of HCV RNAs differing only in their 3′-UTRs and compared their translation efficiencies. HCV RNA containing the X region was translated three- to fivefold more than the corresponding RNAs without this region. Mutations that abolished PTB binding in the X region reduced, but did not completely abolish, enhancement in translation. The X region also enhanced translation from another unrelated IRES (from encephalomyocarditis virus RNA), but did not affect the 5′-end-dependent translation of globin mRNA in either monocistronic or bicistronic RNAs. It did not appear to affect RNA stability. The free X region added in trans, however, did not enhance translation, indicating that the translational enhancement by the X region occurs only in cis. These results demonstrate that the highly conserved 3′ end of HCV RNA provides a novel mechanism for enhancement of HCV translation and may offer a target for antiviral agents.  相似文献   

3.
Positive-strand RNA viruses use diverse mechanisms to regulate viral and host gene expression for ensuring their efficient proliferation or persistence in the host. We found that a small viral noncoding RNA (0.4 kb), named SR1f, accumulated in Red clover necrotic mosaic virus (RCNMV)-infected plants and protoplasts and was packaged into virions. The genome of RCNMV consists of two positive-strand RNAs, RNA1 and RNA2. SR1f was generated from the 3′ untranslated region (UTR) of RNA1, which contains RNA elements essential for both cap-independent translation and negative-strand RNA synthesis. A 58-nucleotide sequence in the 3′ UTR of RNA1 (Seq1f58) was necessary and sufficient for the generation of SR1f. SR1f was neither a subgenomic RNA nor a defective RNA replicon but a stable degradation product generated by Seq1f58-mediated protection against 5′→3′ decay. SR1f efficiently suppressed both cap-independent and cap-dependent translation both in vitro and in vivo. SR1f trans inhibited negative-strand RNA synthesis of RCNMV genomic RNAs via repression of replicase protein production but not via competition of replicase proteins in vitro. RCNMV seems to use cellular enzymes to generate SR1f that might play a regulatory role in RCNMV infection. Our results also suggest that Seq1f58 is an RNA element that protects the 3′-side RNA sequences against 5′→3′ decay in plant cells as reported for the poly(G) tract and stable stem-loop structure in Saccharomyces cerevisiae.  相似文献   

4.
Translation of Hepatitis C Virus (HCV) RNA is directed by an internal ribosome entry site (IRES) in the 5′-untranslated region (5′-UTR). HCV translation is stimulated by the liver-specific microRNA-122 (miR-122) that binds to two binding sites between the stem-loops I and II near the 5′-end of the 5′-UTR. Here, we show that Argonaute (Ago) 2 protein binds to the HCV 5′-UTR in a miR-122-dependent manner, whereas the HCV 3′-UTR does not bind Ago2. miR-122 also recruits Ago1 to the HCV 5’-UTR. Only miRNA duplex precursors of the correct length stimulate HCV translation, indicating that the duplex miR-122 precursors are unwound by a complex that measures their length. Insertions in the 5′-UTR between the miR-122 binding sites and the IRES only slightly decrease translation stimulation by miR-122. In contrast, partially masking the miR-122 binding sites in a stem-loop structure impairs Ago2 binding and translation stimulation by miR-122. In an RNA decay assay, also miR-122-mediated RNA stability contributes to HCV translation stimulation. These results suggest that Ago2 protein is directly involved in loading miR-122 to the HCV RNA and mediating RNA stability and translation stimulation.  相似文献   

5.
The segmented double-stranded (ds) RNA genome of the rotaviruses is replicated asymmetrically, with viral mRNA serving as the template for the synthesis of minus-strand RNA. Previous studies with cell-free replication systems have shown that the highly conserved termini of rotavirus gene 8 and 9 mRNAs contain cis-acting signals that promote the synthesis of dsRNA. Based on the location of the cis-acting signals and computer modeling of their secondary structure, the ends of the gene 8 or 9 mRNAs are proposed to interact in cis to form a modified panhandle structure that promotes the synthesis of dsRNA. In this structure, the last 11 to 12 nucleotides of the RNA, including the cis-acting signal that is essential for RNA replication, extend as a single-stranded tail from the panhandled region, and the 5′ untranslated region folds to form a stem-loop motif. To understand the importance of the predicted secondary structure in minus-strand synthesis, mutations were introduced into viral RNAs which affected the 3′ tail and the 5′ stem-loop. Analysis of the RNAs with a cell-free replication system showed that, in contrast to mutations which altered the structure of the 5′ stem-loop, mutations which caused complete or near-complete complementarity between the 5′ end and the 3′ tail significantly inhibited (≥10-fold) minus-strand synthesis. Likewise, incubation of wild-type RNAs with oligonucleotides which were complementary to the 3′ tail inhibited replication. Despite their replication-defective phenotype, mutant RNAs with complementary 5′ and 3′ termini were shown to competitively interfere with the replication of wild-type mRNA and to bind the viral RNA polymerase VP1 as efficiently as wild-type RNA. These results indicate that the single-strand nature of the 3′ end of rotavirus mRNA is essential for efficient dsRNA synthesis and that the specific binding of the RNA polymerase to the mRNA template is required but not sufficient for the synthesis of minus-strand RNA.  相似文献   

6.
7.
Dengue virus (DENV) is a member of the Flavivirus genus of positive-sense RNA viruses. DENV RNA replication requires cyclization of the viral genome mediated by two pairs of complementary sequences in the 5′ and 3′ ends, designated 5′ and 3′ cyclization sequences (5′-3′ CS) and the 5′ and 3′ upstream of AUG region (5′-3′ UAR). Here, we demonstrate that another stretch of six nucleotides in the 5′ end is involved in DENV replication and possibly genome cyclization. This new sequence is located downstream of the AUG, designated the 5′ downstream AUG region (5′ DAR); the motif predicted to be complementary in the 3′ end is termed the 3′ DAR. In addition to the UAR, CS and DAR motifs, two other RNA elements are located at the 5′ end of the viral RNA: the 5′ stem-loop A (5′ SLA) interacts with the viral RNA-dependent RNA polymerase and promotes RNA synthesis, and a stem-loop in the coding region named cHP is involved in translation start site selection as well as RNA replication. We analyzed the interplay of these 5′ RNA elements in relation to RNA replication, and our data indicate that two separate functional units are formed; one consists of the SLA, and the other includes the UAR, DAR, cHP, and CS elements. The SLA must be located at the 5′ end of the genome, whereas the position of the second unit is more flexible. We also show that the UAR, DAR, cHP, and CS must act in concert and therefore likely function together to form the tertiary RNA structure of the circularized DENV genome.Dengue virus (DENV), a member of the Flaviviridae family, is a human pathogen causing dengue fever, the most common mosquito-borne viral disease in humans. The virus has become a major international public health concern, with 3 billion people at risk for infection and an estimated 50 million dengue cases worldwide every year (28). Neither specific antiviral therapies nor licensed vaccines are available, and the biology of the virus is poorly understood.DENV is a small enveloped virus containing a positive-stranded RNA genome with a length of approximately 10.7 kb. The virus encodes one large polyprotein that is co- and posttranslationally cleaved into 10 viral proteins. The structural proteins C, prM/M, and E are located in the N terminus, followed by the nonstructural proteins NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (6, 10). NS5, the largest of the viral proteins, functions as an RNA-dependent RNA polymerase (RdRP) (29). The coding region is flanked at both ends by untranslated regions (UTR). The 5′ end has a type I cap structure (m7GpppAmp) mediating cap-dependent translation, but the virus can switch to a noncanonical translation mechanism under conditions in which translation factors are limiting (13). Cellular mRNAs are known to circularize via a protein-protein bridge between eIF4G and eIF4E (the cap binding complex) at the 5′ end and the poly(A) binding protein (PABP) at the 3′ end, enhancing translation efficiency. Despite the fact that the DENV 3′ UTR lacks a poly(A) tail, recent findings demonstrated binding of PABP to the 3′ UTR and an effect on RNA translation, suggesting a similar mechanism (12, 26).In addition to a presumed protein-mediated genome circularization regulating viral translation, an RNA-RNA-based 5′ and 3′ (5′-3′) end interaction, which can occur in the absence of proteins, leads to circularization of the viral genome (1, 3, 4, 18, 20, 30, 33, 34). This cyclization of the genome is necessary for viral RNA replication, and thus far, two complementary sequences at the 5′ and 3′ ends have been identified (3). The first are the cyclization sequences (CS) present in the capsid-coding region at the 5′ end (5′ CS) and upstream of the 3′ stem-loop (3′ SL) in the 3′ UTR (3′ CS) (2, 4, 18, 20, 30). A second sequence, known as the 5′ upstream AUG region (5′ UAR) element in the 5′ UTR, base pairs with its complementary 3′ UAR counterpart, which is located at the bottom part of 3′ SL (1, 4, 30). Recently, the structure of the 5′ end of the DENV genome hybridized to the 3′ end was determined in solution (25), confirming previous computer-predicted structures for genome cyclization (4, 20, 30). Besides the base pairing between 5′-3′ UAR and 5′-3′ CS sequences, a third stretch of nucleotides was identified to form a double-stranded (ds) region between the 5′ and 3′ ends.In addition to RNA sequences involved in 5′-3′-end interactions that are necessary for cyclization, the 5′ end of the viral genome harbors at least two more functional RNA elements, the stem-loop A (SLA) and capsid-coding region hairpin (cHP). The SLA consists of the first 70 nucleotides (nt) of the genome, forming a stable stem-loop structure. This structure has been confirmed in several studies and identified as a promoter element for RNA synthesis that recruits the viral RdRp NS5 (16, 22). Once NS5 is bound to the SLA at the 5′ end, it is believed to be delivered to the initiation site of minus-strand RNA synthesis at the 3′ end via 5′-3′ RNA-RNA circularization. In addition, a short poly(U) tract located immediately downstream of SLA has been shown to be necessary for RNA synthesis, although it is not involved in genome circularization (22). Finally, the cHP element resides within the capsid-coding region; it directs start codon selection and is essential for RNA replication (8, 9). The cHP structure is more important than its primary sequence. For start codon selection, it is believed that the cHP stalls the scanning initiation complex over the first AUG, favoring its recognition (9). In the case of RNA replication, the cHP likely stabilizes the overall 5′-3′ panhandle structure or participates in recruitment of factors associated with the replicase machinery (8).In this study, we demonstrate that in addition to the 5′ CS and 5′ UAR sequences, a third stretch of nucleotides in the 5′ end is required for RNA replication and appears to be involved in genome circularization. This new motif is located downstream of the AUG and was therefore designated the downstream AUG region (5′ DAR) element, with the predicted counterpart in the 3′ end designated the 3′ DAR. Our results indicate that the 5′ DAR modulates RNA-RNA interaction and RNA replication, and restoring complementarity between the 5′ DAR and 3′ DAR rescues detrimental effects caused by mutations in the 5′ DAR on genome circularization and RNA replication. Although the role of the predicted 3′ DAR counterpart is less conclusive, it may serve to make other structures and sequences in the 3′ end available for 5′-3′ RNA-RNA interaction to facilitate the replication-competent conformation of the DENV genome.Furthermore, we analyzed the functional interplay of RNA elements in the viral 5′ end, showing that two separate units are formed during replication. The first consists of the SLA, and it must be located at the very 5′ end of the genome. The second unit includes UAR, DAR, cHP, and CS elements, and the positional requirements are more flexible within the DENV RNA 5′ terminus. However, all four elements in the second unit must act in concert, forming a functional tertiary RNA structure of the circularized viral genome.  相似文献   

8.
Bacterial Hfq-associated small regulatory RNAs (sRNAs) parallel animal microRNAs in their ability to control multiple target mRNAs. The small non-coding MicA RNA represses the expression of several genes, including major outer membrane proteins such as ompA, tsx and ecnB. In this study, we have characterised the RNA determinants involved in the stability of MicA and analysed how they influence the expression of its targets. Site-directed mutagenesis was used to construct MicA mutated forms. The 5′linear domain, the structured region with two stem-loops, the A/U-rich sequence or the 3′ poly(U) tail were altered without affecting the overall secondary structure of MicA. The stability and the target regulation abilities of the wild-type and the different mutated forms of MicA were then compared. The 5′ domain impacted MicA stability through an RNase III-mediated pathway. The two stem-loops showed different roles and disruption of stem-loop 2 was the one that mostly affected MicA stability and abundance. Moreover, STEM2 was found to be more important for the in vivo repression of both ompA and ecnB mRNAs while STEM1 was critical for regulation of tsx mRNA levels. The A/U-rich linear sequence is not the only Hfq-binding site present in MicA and the 3′ poly(U) sequence was critical for sRNA stability. PNPase was shown to be an important exoribonuclease involved in sRNA degradation. In addition to the 5′ domain of MicA, the stem-loops and the 3′ poly(U) tail are also shown to affect target-binding. Disruption of the 3′U-rich sequence greatly affects all targets analysed. In conclusion, our results have shown that it is important to understand the “sRNA anatomy” in order to modulate its stability. Furthermore, we have demonstrated that MicA RNA can use different modules to regulate its targets. This knowledge can allow for the engineering of non-coding RNAs that interact differently with multiple targets.  相似文献   

9.
10.
The 3′ end region of foot-and-mouth disease virus (FMDV) consists of two distinct elements, a 90 nt untranslated region (3′-NCR) and a poly(A) tract. Removal of either the poly(A) tract or both the 3′-NCR and the poly(A) tract abrogated infectivity in susceptible cells in the context of a full-length cDNA clone. We have addressed the question of whether the impairment of RNA infectivity is related to defects at the translation level using a double approach. First, compared to the full-length viral RNA, removal of the 3′ sequences reduced the efficiency of translation in vitro. Secondly, a stimulatory effect of the 3′ end sequences on IRES-dependent translation was found in vivo using bicistronic constructs. RNAs carrying the FMDV 3′ end sequences linked to the second cistron showed a significant stimulation of IRES-dependent translation, whereas cap-dependent translation was not affected. Remarkably, IRES-dependent stimulation exerted by the poly(A) tract or the 3′-NCR seems to be the result of two separate events, as the 3′-NCR alone enhanced IRES activity on its own. Under conditions of FMDV Lb protease-induced translation shut-off, the stimulation of IRES activity reached values above 6-fold in living cells. A northern blot analysis indicated that IRES stimulation was not the consequence of a change in the stability of the bicistronic RNA produced in transfected cells. Analysis of the RNA-binding proteins interacting with a mixture of 3′ end and IRES probes showed an additive pattern. Altogether, our results strongly suggest that individual signals in the viral 3′ end ensure stimulation of FMDV translation.  相似文献   

11.
12.
The 5′ untranslated region of the chloroplast psbA mRNA, encoding the D1 protein, is processed in Chlamydomonas reinhardtii. Processing occurs just upstream of a consensus Shine-Dalgarno sequence and results in the removal of 54 nucleotides from the 5′ terminus, including a stem-loop element identified previously as an important structure for D1 expression. Examination of this processing event in C. reinhardtii strains containing mutations within the chloroplast or nuclear genomes that block psbA translation reveals a correlation between processing and ribosome association. Mutations within the 5′ untranslated region of the psbA mRNA that disrupt the Shine-Dalgarno sequence, acting as a ribosome binding site, preclude translation and prevent mRNA processing. Similarly, nuclear mutations that specifically affect synthesis of the D1 protein specifically affect processing of the psbA mRNA. In vitro, loss of the stem-loop element does not prohibit the binding of a message-specific protein complex required for translational activation of psbA upon illumination. These results are consistent with a hierarchical maturation pathway for chloroplast messages, mediated by nuclear-encoded factors, that integrates mRNA processing, message stability, ribosome association, and translation.  相似文献   

13.
Barley yellow dwarf virus mRNA, which lacks both cap and poly(A) tail, has a translation element (3′-BTE) in its 3′-UTR essential for efficient translation initiation at the 5′-proximal AUG. This mechanism requires eukaryotic initiation factor 4G (eIF4G), subunit of heterodimer eIF4F (plant eIF4F lacks eIF4A), and 3′-BTE-5′-UTR interaction. Using fluorescence anisotropy, SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) analysis, and toeprinting, we found that (i) 40S subunits bind to BTE (Kd = 350 ± 30 nm), (ii) the helicase complex eIF4F-eIF4A-eIF4B-ATP increases 40S subunit binding (Kd = 120 ± 10 nm) to the conserved stem-loop I of the 3′-BTE by exposing more unpaired bases, and (iii) long distance base pairing transfers this complex to the 5′-end of the mRNA, where translation initiates. Although 3′-5′ interactions have been recognized as important in mRNA translation, barley yellow dwarf virus employs a novel mechanism utilizing the 3′-UTR as the primary site of ribosome recruitment.  相似文献   

14.
15.
The spirochete Leptospira interrogans causes a systemic infection that provokes a febrile illness. The putative lipoproteins LigA and LigB promote adhesion of Leptospira to host proteins, interfere with coagulation, and capture complement regulators. In this study, we demonstrate that the expression level of the LigA and LigB proteins was substantially higher when L. interrogans proliferated at 37°C instead of the standard culture temperature of 30°C. The RNA comprising the 175-nucleotide 5′ untranslated region (UTR) and first six lig codons, whose sequence is identical in ligA and ligB, is predicted to fold into two distinct stem-loop structures separated by a single-stranded region. The ribosome-binding site is partially sequestered in double-stranded RNA within the second structure. Toeprint analysis revealed that in vitro formation of a 30S-tRNAfMet-mRNA ternary complex was inhibited unless a 5′ deletion mutation disrupted the second stem-loop structure. To determine whether the lig sequence could mediate temperature-regulated gene expression in vivo, the 5′ UTR and the first six codons were inserted between the Escherichia coli l-arabinose promoter and bgaB (β-galactosidase from Bacillus stearothermophilus) to create a translational fusion. The lig fragment successfully conferred thermoregulation upon the β-galactosidase reporter in E. coli. The second stem-loop structure was sufficient to confer thermoregulation on the reporter, while sequences further upstream in the 5′ UTR slightly diminished expression at each temperature tested. Finally, the expression level of β-galactosidase was significantly higher when point mutations predicted to disrupt base pairs in the second structure were introduced into the stem. Compensatory mutations that maintained base pairing of the stem without restoring the wild-type sequence reinstated the inhibitory effect of the 5′ UTR on expression. These results indicate that ligA and ligB expression is limited by double-stranded RNA that occludes the ribosome-binding site. At elevated temperatures, the ribosome-binding site is exposed to promote translation initiation.  相似文献   

16.
mRNA decapping is a critical step in the control of mRNA stability and gene expression and is carried out by the Dcp2 protein. Dcp2 is an RNA-binding protein that must bind the RNA in order to recognize the cap for hydrolysis. We previously demonstrated that a 60 nucleotide (nt) element at the 5′ end of the mRNA encoding Rrp41 is preferentially bound and decapped by Dcp2. Here, we demonstrate that enhanced decapping of this element is dependent on the structural integrity of its first 33 nt and not its primary sequence. The structure consists of a stem-loop positioned <10 nt from the 5′ end of the mRNA. The generality of a stem-loop structure in enhanced Dcp2-mediated decapping was underscored by the identification of additional potential Dcp2 substrate mRNAs by a global analysis of human mRNAs containing a similar predicted stem-loop structure at their respective 5′ end. These studies suggest a general role for 5 stem-loops in enhancing decapping activity and the utilization of this structure as a predictive tool for Dcp2 target substrates. These studies also demonstrate that Dcp2 alone in the absence of additional proteins can preferentially associate with and modulate mRNA decapping.  相似文献   

17.
Ray PS  Das S 《Nucleic acids research》2002,30(20):4500-4508
Translation initiation in Coxsackievirus B3 (CVB3) occurs via ribosome binding to an internal ribosome entry site (IRES) located in the 5′-untranslated region (UTR) of the viral RNA. This unique mechanism of translation initiation requires various trans-acting factors from the host. We show that human La autoantigen (La) binds to the CVB3 5′-UTR and also demonstrate the dose-dependent effect of exogenously added La protein in stimulating CVB3 IRES-mediated translation. The requirement of La for CVB3 IRES mediated translation has been further demonstrated by inhibition of translation as a result of sequestering La and its restoration by exogenous addition of recombinant La protein. The abundance of La protein in various mouse tissue extracts has been probed using anti-La antibody. Pancreatic tissue, a target organ for CVB3 infection, was found to have a large abundance of La protein which was demonstrated to interact with the CVB3 5′-UTR. Furthermore, exogenous addition of pancreas extract to in vitro translation reactions resulted in a dose dependent stimulation of CVB3 IRES-mediated translation. These observations indicate the role of La in CVB3 IRES-mediated translation, and suggest its possible involvement in the efficient translation of the viral RNA in the pancreas.  相似文献   

18.
Giardiavirus (GLV) utilizes an internal ribosome entry site (IRES) for translation initiation in the early branching eukaryote Giardia lamblia. Unlike most of the viral IRESs among higher eukaryotes, which localize primarily within the 5′-untranslated region (UTR), the GLV IRES comprises 253 nts of 5′UTR and the initial 264 nts in the open-reading-frame (ORF). To test if GLV IRES also functions in higher eukaryotic systems, we examined it in rabbit reticulocyte lysate (RRL) and found that it functions much less efficiently than the IRES from the Encephalomyocarditis virus (EMCV) or Cricket paralysis virus (CrPV). In contrast, both EMCV-IRES and CrPV-IRESs were inactive in transfected Giardia cells. Structure-function analysis indicated that only the stem-loop U5 from the 5′UTR and the stem-loop I plus the downstream box (Dbox) from the ORF of GLV IRES are required for limited IRES function in RRL. Edeine, a translation initiation inhibitor, did not significantly affect the function of GLV IRES in either RRL or Giardia, indicating that a pre-initiation complex is not required for GLV IRES–mediated translation initiation. However, the small ribosomal subunit purified from Giardia did not bind to GLV IRES, indicating that additional protein factors may be necessary. A member of the helicase family IBP1 and two known viral IRES binding proteins La autoantigen and SRp20 have been identified in Giardia that bind to GLV IRES in vitro. These three proteins could be involved in facilitating small ribosome recruitment for initiating translation.  相似文献   

19.
Previously, we reported that in clam oocytes, cytoplasmic polyadenylation element-binding protein (CPEB) co-immunoprecipitates with p47, a member of the highly conserved RCK family of RNA helicases which includes Drosophila Me31B and Saccharomyces cerevisiae Dhh1. Xp54, the Xenopus homologue, with helicase activity, is a component of stored mRNP. In tethered function assays in Xenopus oocytes, we showed that MS2–Xp54 represses the translation of non-adenylated firefly luciferase mRNAs and that mutations in two core helicase motifs, DEAD and HRIGR, surprisingly, activated translation. Here we show that wild-type MS2–Xp54 tethered to the reporter mRNA 3′-untranslated region (UTR) represses translation in both oocytes and eggs in an RNA-dependent complex with endogenous Xp54. Injection of mutant helicases or adenylated reporter mRNA abrogates this association. Thus Xp54 oligomerization is a hallmark of translational repression. Xp54 complexes, which also contain CPEB and eIF4E in oocytes, change during meiotic maturation. In eggs, CPEB is degraded and, while eIF4E still interacts with Xp54, this interaction becomes RNA dependent. Supporting evidence for RNA-mediated oligomerization of endogenous Xp54, and RNA-independent association with CPEB and eIF4E in oocytes was obtained by gel filtration. Altogether, our data are consistent with a model in which the active form of the Xp54 RNA helicase is an oligomer in vivo which, when tethered, via either MS2 or CPEB to the 3′UTR, represses mRNA translation, possibly by sequestering eIF4E from the translational machinery.  相似文献   

20.
RNA guided ribonuclease complexes play central role in RNA interference. Members of the evolutionarily conserved Argonaute protein family form the catalytic cores of these complexes. Unlike a number of other plant Argonautes, the role of AGO2 has been obscure until recently. Newer data, however, have indicated its involvement in various biotic and abiotic stress responses. Despite its suggested importance, there is no detailed characterization of this protein to date. Here we report cloning and molecular characterization of the AGO2 protein of the virological model plant Nicotiana benthamiana. We show that AGO2 can directly repress translation via various miRNA target site constellations (ORF, 3′ UTR). Interestingly, although AGO2 seems to be able to silence gene expression in a slicing independent fashion, its catalytic activity is still a prerequisite for efficient translational repression. Additionally, mismatches between the 3′ end of the miRNA guide strand and the 5′ end of the target site enhance gene silencing by AGO2. Several functionally important amino acid residues of AGO2 have been identified that affect its small RNA loading, cleavage activity, translational repression potential and antiviral activity. The data presented here help us to understand how AGO2 aids plants to deal with stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号