首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of β-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations ≤0.13 mM, the thermogram shows an endothermic peak at 84.3°C, corresponding to denaturation; for concentrations >0.13 mM an exothermic peak also appears, above 90°C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu2+ or Zn2+ ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10°C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.  相似文献   

2.
Amyloid-β(1-42) (Aβ) is believed to play a crucial role in the ethiopathogenesis of Alzheimer's Disease (AD). In particular, its interactions with biologically relevant metal ions may lead to the formation of highly neurotoxic complexes. Here we describe the species that are formed upon reacting Aβ with several biometals, namely copper, zinc, iron, and with non-physiological aluminum to assess whether different metal ions are able to differently drive Aβ aggregation. The nature of the resulting Aβ-metal complexes and of the respective aggregates was ascertained through a number of biophysical techniques, including electrospray ionization mass spectrometry, dynamic light scattering, fluorescence, transmission electron microscopy and by the use of conformation-sensitive antibodies (OC, αAPF). Metal binding to Aβ is shown to confer highly different chemical properties to the resulting complexes; accordingly, their overall aggregation behaviour was deeply modified. Both aluminum(III) and iron(III) ions were found to induce peculiar aggregation properties, ultimately leading to the formation of annular protofibrils and of fibrillar oligomers. Notably, only Aβ-aluminum was characterized by the presence of a relevant percentage of aggregates with a mean radius slightly smaller than 30 nm. In contrast, both zinc(II) and copper(II) ions completely prevented the formation of soluble fibrillary aggregates. The biological effects of the various Aβ-metal complexes were studied in neuroblastoma cell cultures: Aβ-aluminum turned out to be the only species capable of triggering amyloid precursor and tau181 protein overproduction. Our results point out that Al can effectively interact with Aβ, forming "structured" aggregates with peculiar biophysical properties which are associated with a high neurotoxicity.  相似文献   

3.
Metal ions are implicated in protein aggregation processes of several neurodegenerative pathologies. In this work the effects of Cu(II) and Zn(II) ions on heat-induced structural modifications of bovine serum albumin (BSA) were studied, with the aim of delineating the role of these ions in the early stages of proteins aggregation kinetics. A joint application of different techniques was used. The aggregate growth was followed by dynamic light scattering measurements, whereas the conformational changes occurring in the protein structure were monitored by Raman and IR spectroscopy. Both in absence and in presence of metal ions, heating treatment gave rise to β-structures to the detriment of α-helix conformation of BSA. The temperature of protein unfolding was not sensitively affected by the presence of Zn(II) or Cu(II) ions; on the contrary, only Zn(II) ions slightly promoted the heat-induced aggregation of the protein, since bigger aggregates were formed in their presence. The different efficacy of the Cu(II) and Zn(II) ions in promoting the BSA aggregation were highlighted by Raman measurements, assessing the role of His residues in metal binding. A distinct polypeptide folding of the two metal-BSA systems takes place, since the predominant mode of metal binding depends on metal. In particular, in Zn-BSA the metal coordination involves the imidazole Nτ atom of His which can promote inter-molecular cross-linking.  相似文献   

4.
Protein cold-gelation has recently received particular attention for its relevance in bio and food technology. In this work, we report a study on bovine serum albumin cold-gelation induced by copper or zinc ions. Metal-induced cold-gelation of proteins requires two steps: during the first one, the heat treatment causes protein partial unfolding and aggregation; then, after cooling the solution to room temperature, gels are formed upon the addition of metal ions. The thermally induced behaviour has been mainly investigated through different techniques: Fourier transform infrared (FTIR) spectroscopy, circular dichroism, dynamic light scattering (DLS) and rheology. Data have shown that the aggregation process is mainly due to protein conformational changes—α-helices into β-aggregates—forming small aggregated structures with a mean diameter of about 20 nm a few minutes after heating. After metal ion addition, the viscoelastic properties of the gels have been investigated by rheological measurements. The behaviour of the elastic and viscous moduli as a function of time is discussed in terms of ion concentration and type. Our results show that: (1) the elastic behaviour depends on ion concentration and (2) at a given ion concentration, gels obtained in the presence of zinc exhibit an elastic value larger than that observed in the Cu2+ case. Data suggest that cold-gelation is the result of different mechanisms: the ion-mediated protein–protein interaction and the bridging effect due to the presence of divalent ions in solution.  相似文献   

5.
The aggregation and gelation properties of beta-lactoglobulin (BLG), a globular protein from milk, was studied in hydro-ethanolic solutions (50/50% (v/v)) at room temperature. The phase state diagrams as a function of pH and ethanol concentration showed that a gel structure appeared after a period ranging from 1 min to 1 week depending on the physico-chemical conditions. The aggregation kinetics, studied by infrared spectroscopy and dynamical rheological measurements, highly depended upon the pH; the process being the fastest at pH 7. Alcohol-induced aggregation of BLG was characterized by the formation of intermolecular hydrogen bonded beta-sheet structures. Small angle neutron scattering indicated that the aggregates structures in the final gels were similar at pH 7, 8 and 9. Through the data obtained at the molecular and macroscopic levels, it can be concluded that the kinetics of gelation were pH dependent while the spatial arrangements of the aggregates were similar in the final structures. The heterogeneous structures formed in hydro-ethanolic gels could be analysed in terms of a phase separation, the syneresis being the final visible state.  相似文献   

6.
The aggregation and gelation properties of beta-lactoglobulin (BLG), a globular protein from milk, was studied in aqueous ethanol solutions at room temperature. The phase state diagrams as a function of pH and ethanol concentration showed that a gel structure appeared after a period ranging from 1 min to 1 week, depending on the physico-chemical conditions. The in-situ kinetics of aggregation were followed by several methods in order to obtain a better understanding of the building of aggregates by the addition of ethanol. It was shown that the aggregation kinetics highly depended upon the pH, the process being fastest at pH 7. Viscoelasticity and infrared measurements indicated that alcohol-induced gelation would proceed via a two-step mechanism: small aggregates loosely connected between them were first built up; a real network took place in a second step. The coarse and irregular structures formed in aqueous ethanol gels revealed by confocal laser scanning microscopy could be analysed in terms of a phase separation. This observation was supported by a syneresis phenomenon visible in the final gel state. BLG in water-ethanol solution would undergo either an inhibition of the demixing by gelation or a binary phase separation accompanied by an irreversible gelation transition.  相似文献   

7.

Background

Metal ions such as copper or zinc are involved in the development of neurodegenerative pathologies and metabolic diseases such as diabetes mellitus. Albumin structure and functions are impaired following metal- and glucose-mediated oxidative alterations. The aim of this study was to elucidate effects of Cu(II) and Zn(II) ions on glucose-induced modifications in albumin by focusing on glycation, aggregation, oxidation and functional aspects.

Methods

Aggregation and conformational changes in albumin were monitored by spectroscopy, fluorescence and microscopy techniques. Biochemical assays such as carbonyl, thiol groups, albumin-bound Cu, fructosamine and amine group measurements were used. Cellular assays were used to gain functional information concerning antioxidant activity of oxidized albumins.

Results

Both metals promoted inhibition of albumin glycation associated with an enhanced aggregation and oxidation process. Metal ions gave rise to the formation of β-amyloid type aggregates in albumin exhibiting impaired antioxidant properties and toxic activity to murine microglia cells (BV2). The differential efficiency of both metal ions to inhibit albumin glycation, to promote aggregation and to affect cellular physiology is compared.

Conclusions and general significance

Considering the key role of oxidized protein in pathology complications, glycation-mediated and metal ion-induced impairment of albumin properties might be important parameters to be followed and fought.  相似文献   

8.
The heat induced aggregation of human serum albumin (HSA) with and without an equimolar amount of Cu(II) and Zn(II) was investigated by using optical absorption, fluorescence, AFM and EPR spectroscopy. Turbidity experiments as a function of temperature indicate that the protein aggregation occurs after the melting of the protein. The kinetic of HSA aggregation, investigated between 60 and 70 °C by monitoring the optical density changes at 400 nm on a 180 min time window, shows an exponential growth with a rate that increases with the temperature. Fluorescence of the thioflavin T evidences a significant increase of the intensity at 480 nm at increasing incubation time. These results combined with AFM experiments show that the protein aggregates are elongated oligomers with fibrillar-like features. The absence of a lag-phase suggests that the early stage aggregation of HSA follows a downhill pathway that does not require the formation of an organized nucleus. The presence of Cu(II) and Zn(II) ions does not affect the thermally induced aggregation process and the morphology of HSA aggregates. The result is compatible with the binding of the metal ions to the protein in the native state and with the high conformational stability of HSA.  相似文献   

9.
Amyloid formation is a hallmark of many medical diseases including diabetes type 2, Alzheimer's and Parkinson diseases. Under these pathological conditions, misfolded proteins self-assemble forming oligomers and fibrils, structurally heterogeneous aggregates that exhibit a large variety of shapes and forms. A growing body of evidence points to drastic changes in the lipid profile in organs affected by amyloidogenic diseases. In this study, we investigated the extent to which individual phospho- and sphingolipids, as well as their mixtures can impact insulin aggregation. Our results show that lipids and their mixtures uniquely alter rates of insulin aggregation simultaneously changing the secondary structure of protein aggregates that are grown in their presence. These structurally different protein-lipid aggregates impact cell viability to different extent while using distinct mechanisms of toxicity. These findings suggest that irreversible changes in lipid profiles of organs may trigger formation of toxic protein species that in turn are responsible for the onset and progression of amyloidogenic diseases.  相似文献   

10.
Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed.  相似文献   

11.
Recent studies have demonstrated that the octapeptide repeats of the N-terminal region of prion protein may be responsible for de novo generation of infectious prions in the absence of template. Here we demonstrate that PrP-(23-98), an N-terminal portion of PrP, is converted to aggregates upon incubation with NADPH and copper ions. Other pyridine nucleotides possessing a phosphate group on the adenine-linked ribose moiety (the reduced form of nicotinamide adenine dinucleotide 3'-phosphate, nicotinic acid adenine dinucleotide phosphate, and NADP) were also effective in promoting aggregation, but NADH and NAD had no effect. The aggregation was attenuated by the metal chelator EDTA or by modification of histidyl residues with diethyl pyrocarbonate. The aggregates are amyloid-like as judged by the binding of thioflavin T, a fluorescent probe for amyloid, but do not exhibit fibrillar structures according to electron micrography. Interestingly the aggregates were resistant to proteinase K digestion. Likewise NADPH and zinc ions caused aggregation of PrP-(23-98), but the resulting aggregates were susceptible to degradation by proteinase K. Upon incubation with NADPH and copper ions, the full-length molecule PrP-(23-231) also formed proteinase K-resistant amyloid-like aggregates. Because it is possible that PrP, NADPH, and copper ions could associate in certain tissues, the aggregation observed in this study may be involved in prion initiation especially in the nonfamilial types of prion diseases.  相似文献   

12.
Xu Y  Seeman D  Yan Y  Sun L  Post J  Dubin PL 《Biomacromolecules》2012,13(5):1642-1651
The effect of heparin on both native and denatured protein aggregation was investigated by turbidimetry and dynamic light scattering (DLS). Turbidimetric data show that heparin is capable of inhibiting and reversing the native aggregation of bovine serum albumin (BSA), β-lactoglobulin (BLG), and Zn-insulin at a pH near pI and at low ionic strength I; however, the results vary with regard to the range of pH, I, and protein-heparin stoichiometry required to achieve these effects. The kinetics of this process were studied to determine the mechanism by which interaction with heparin could result in inhibition or reversal of native protein aggregates. For each protein, the binding of heparin to distinctive intermediate aggregates formed at different times in the aggregation process dictates the outcome of complexation. This differential binding was explained by changes in the affinity of a given protein for heparin, partly due to the effects of protein charge anisotropy as visualized by electrostatic modeling. The heparin effect can be further extended to include inhibition of denaturing protein aggregation, as seen from the kinetics of BLG aggregation under conditions of thermally induced unfolding with and without heparin.  相似文献   

13.
X-ray absorption spectroscopy data show different metal binding site structures in beta-amyloid peptides according to whether they are complexed with Cu(2+) or Zn(2+) ions. While the geometry around copper is stably consistent with an intra-peptide binding with three metal-coordinated Histidine residues, the zinc coordination mode depends on specific solution conditions. In particular, different sample preparations are seen to lead to different geometries around the absorber that are compatible with either an intra- or an inter-peptide coordination mode. This result reinforces the hypothesis that assigns different physiological roles to the two metals, with zinc favoring peptide aggregation and, as a consequence, plaque formation.  相似文献   

14.
Binding of divalent metal ions with intrinsically disordered fibrillogenic proteins, such as amyloid-β (Aβ), influences the aggregation process and the severity of neurodegenerative diseases. The Aβ monomers and oligomers are the building blocks of the aggregates. In this work, we report the structures and free energy landscapes of the monomeric zinc(II)-bound Aβ40 (Zn:Aβ40) and zinc(II)-bound Aβ42 (Zn:Aβ42) intrinsically disordered fibrillogenic metallopeptides in an aqueous solution by utilizing an approach that employs first principles calculations and parallel tempering molecular dynamics simulations. The structural and thermodynamic properties, including the secondary and tertiary structures and conformational Gibbs free energies of these intrinsically disordered metallopeptide alloforms, are presented. The results show distinct differing characteristics for these metallopeptides. For example, prominent β-sheet formation in the N-terminal region (Asp1, Arg5, and Tyr10) of Zn:Aβ40 is significantly decreased or lacking in Zn:Aβ42. Our findings indicate that blocking multiple reactive residues forming abundant β-sheet structure located in the central hydrophobic core and C-terminal regions of Zn:Aβ42 via antibodies or small organic molecules might help to reduce the aggregation of Zn(II)-bound Aβ42. Furthermore, we find that helix formation increases but β-sheet formation decreases in the C-terminal region upon Zn(II) binding to Aβ. This depressed β-sheet formation in the C-terminal region (Gly33-Gly38) in monomeric Zn:Aβ42 might be linked to the formation of amorphous instead of fibrillar aggregates of Zn:Aβ42.  相似文献   

15.
Highly hydrophobic protein Z19 zein shows a tendency towards oligomerization. The role of temperature and pH on the oligomerization process was studied monitoring the secondary structure content and the appearance of aggregates by Circular Dichroism Spectroscopy (CD) and Dinamic Light Scattering (DLS). Z19 zein suffers irreversible thermal denaturalization, as demonstrated by far-UV CD measurements. DLS data indicate that this denaturalization is accompanied by oligomerization processes which are strongly dependent on temperature. The aggregates that appear when the sample is heated maintain a certain amount of their native structure. Oligomers, showing high stability to temperature changes and other denaturing conditions with molecular weights of 45, 66 kDa and higher, were detected by SDS-PAGE. The secondary structure strongly depends on pH. Thus, at pH above pI (6.8), all the protein structure is in alpha helix. The formation of disulfide bonds plays an important role in the aggregation process, since most of the sulfhydryls in the protein (97.52%) form disulfide bonds and only 2.47% of them are free and superficially exposed. The sensitivity towards thermal denaturalization is also affected by pH rises.  相似文献   

16.
Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation.  相似文献   

17.
Aggregation of proteins appears to be associated most often with conformational and structural changes that lead to exposure of some apolar residues. Depending on the native structure of the protein in exam, aggregation is a process that involves different mechanisms, whose time of occurrence and interplay can depend upon temperature. To single out information about the multistages of the aggregation pathway, here we investigate the thermally induced conformational and structural changes of the beta-lactoglobulin (BLG). The experimental approach consists in studying steady-state fluorescence spectra of intrinsic chromophores, two tryptophans, and Anylino-Naphthalene-Sulfonate dye (ANS) molecular probe. This technique revealed to be particularly suitable in investigating samples in the low concentration range and at the initial steps of the aggregation process. The Rayleigh scattering of the exciting light follows the growth of the intermolecular interactions at the same time. Complementary information is also obtained by circular dichroism (CD) measurements on samples in the same experimental conditions. The obtained data indicate a well-defined interconversion between quaternary, ternary and secondary structures, together with conformational rearrangements driven by hydrophobic interactions and intermolecular bonds. The results are also discussed in comparison with similar studies on BSA aggregation.  相似文献   

18.
Both metal ions and lipid membranes have a wide distribution in amyloid plaques and play significant roles in AD pathogenesis. Although influences of different metal ions or lipid vesicles on the aggregation of Aβ peptides have been extensively studied, their combined effects are less understood. In this study, we reported a unique effect of copper ion on Aβ aggregation in the presence of lipid vesicles, different from other divalent metal ions. Cu2+ in a super stoichiometric amount leads to the rapid formation of β-sheet rich structure, containing abundant low molecular weight (LMW) oligomers. We demonstrated that oligomerization of Aβ40 induced by Cu2+ binding was an essential prerequisite for the rapid conformation transition. Overall, the finding provided a new view on the complex triple system of Aβ, copper ion and lipid vesicles, which might help understanding of Aβ pathologies.  相似文献   

19.
We here report an experimental study on the thermal aggregation process of concanavalin A, a protein belonging to the legume lectins family. The aggregation process and the involved conformational changes of the protein molecules were followed by means of fluorescence techniques, light scattering, circular dichroism, zeta potential measurements and atomic force microscopy. Our results show that the aggregation process of concanavalin A may evolve through two distinct pathways leading, respectively, to the formation of amyloids or amorphous aggregates. The relative extent of the two pathways is determined by pH, as amyloid aggregation is favored at high pH values ( approximately 9), while the formation of amorphous aggregates is favored at low pH ( approximately 5). At difference from amorphous aggregation, the formation of amyloid fibrils requires significant conformational changes on the protein, both at secondary and tertiary structural level. To our knowledge, this is the first observation of amyloid fibrils from concanavalin A.  相似文献   

20.
Protein aggregation is a hallmark of many diseases, including amyotrophic lateral sclerosis (ALS) where aggregation of copper/zinc superoxide dismutase (SOD1) is implicated in pathogenesis. We report here that fully metallated (holo) SOD1 under physiologically relevant solution conditions can undergo changes in metallation and/or dimerization over time and form aggregates that do not exhibit classical characteristics of amyloid. The relevance of the observed aggregation to disease is demonstrated by structural and tinctorial analyses, including the novel observation of binding of an anti-SOD1 antibody that specifically recognizes aggregates in ALS patients and mice models. ALS-associated SOD1 mutations can promote aggregation but are not essential. The SOD1 aggregation is characterized by a lag phase, which is diminished by self- or cross-seeding and by heterogeneous nucleation. We interpret these findings in terms of an expanded aggregation mechanism consistent with other in vitro and in vivo findings that point to multiple pathways for the formation of toxic aggregates by different forms of SOD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号