首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitors of phospholipase A2, tetracaine and quinacrine, inhibitors of protein kinases, H-7 and H-8, and a diacylglycerol lipase inhibitor reduced the level of CMV-induced [3H]AA release. A combination of H-7 and quinacrine inhibited stimulation of [3H]AA by about 80%. LU cells chronically treated with TPA and infected with CMV, had a reduced level of CMV-induced [3H]AA release and in the presence of quinacrine it was completely inhibited. These results suggest that CMV-induced stimulation of AA metabolism is mediated by pathways which are associated with activation of PLA2 and protein kinase C.  相似文献   

2.
In the present study, the interaction of the terminal complement complexes with oligodendrocytes was investigated for observation of its effect on membrane lipid hydrolysis. [14C]Arachidonic acid was incorporated into the membrane lipids of cultured oligodendrocytes before sensitization with anti-galactocerebroside antiserum. Cells were then exposed to excess C6-deficient rabbit serum reconstituted with limiting doses of C6 to form various numbers of C5b-9 complexes. Qualitative analysis of the supernatants by HPLC revealed the presence of compounds that coeluted with arachidonic acid and its oxygenated derivatives, prostaglandin E2, leukotrienes E4 and B4, and 15-hydroxyeicosatetraenoic acid. The kinetics of leukotriene B4 release by excess C5b-8 was quantitated by radioimmunoassay. Leukotriene B4 release approached a maximum around 30 min, and C6 dose-response studies performed at 1 h showed that maximal levels of leukotriene B4 were detected over a range of sublytic C5b-9 attack. Maximal release of leukotriene B4 was also achieved by C5b-8 without further enhancement by addition of lytic doses of C9. Results indicate that sublytic attack of oligodendrocytes by complement induces release of lipid-derived inflammatory mediators.  相似文献   

3.
The stimulation of the human neutrophil NADPH-oxidase is initiated by a variety of agonists, which appear to utilize more than one activation pathway. We have discerned that opsonized zymosan (OZ) stimulates O2- release by a mechanism distinct from that of phorbol myristate acetate (PMA). PMA differs from OZ stimulation in its susceptibility to H-7 (a protein kinase inhibitor) inhibition of O2- release and the lack of PMA-initiated release of radiolabeled arachidonic acid ([3H]AA) from prelabeled cells. That AA release was linked to O2- generation in OZ-stimulated cells was suggested by the finding that mepacrine, a phospholipase inhibitor, exhibits parallel dose response inhibition for both O2- generation and [3H]AA release, whereas mepacrine did not significantly inhibit the O2- generation induced by PMA. The specific involvement of phospholipase A2 (PLA2) in the release of AA was indicated by the lack of release of [3H]oleate, which is not released by PLA2 in intact cells; [3H]AA released from phosphatidylinositol and phosphatidylcholine and not accompanied by the formation of [3H]-arachidonyl phosphatidic acid, thus eliminating the involvement of phospholipase C; and the inhibition of [3H]AA release by p-bromophenacyl bromide, a specific PLA2 inhibitor. The reduction of O2- formation by inhibitors of AA metabolism (BW755C, acetylsalicylic acid, and indomethacin) further supports a linkage between AA release and O2- generation. That [3H]AA release, like O2- generation, in OZ-stimulated cells was calcium dependent further differentiates OZ from calcium-independent PMA activation. These studies in toto suggest that OZ stimulation of the NADPH-oxidase differs from PMA, in that the particulate stimulus is PLA2 mediated and independent of protein kinase C.  相似文献   

4.
When mouse pancreatic "minilobules" prelabeled with either [14C]arachidonic acid (AA), [14C]stearic acid (SA), or [3H]glycerol were stimulated with the secretogogue, caerulein, there was a 60-70% loss in radioactivity in phosphatidylinositol (PI) at 30 min. This loss was accompanied by the formation of [14C] phosphatidic acid (PA), [14C]diacylglycerol (DG), [14C] triacylglycerol (TG), and free [14C]AA, [14C]SA, and [3H]glycerol. The loss in radioactive PI was the same as the loss in chemically measured PI-phosphorus. Thirty to fifty per cent of the caerulein-induced loss of prelabeled PI could be accounted for as free [14C]AA, [14C]SA, or [3H]glycerol. Increased incorporation of fatty acid or glycerol residues into DG, PA, and TG accounted for the balance of the loss in PI. The specific DG-lipase inhibitor, RHC 80267, markedly inhibited the caerulein-stimulated release of [14C]AA, [14C]SA, and [3H]glycerol and roughly doubled the caerulein-induced increment in [14C]AA-, [14C]SA-, or [3H]glycerol-labeled DG, showing that the source of the caerulein-induced increment in fatty acids and glycerol was DG. When the PI was prelabeled with either [32P] orthophosphate, [3H]myoinositol, or [3H]glycerol, only 1% or less of the radioactivity in PI was in lysophosphatidylinositol (LPI), and there was no increase in radioactivity in LPI on stimulation with caerulein. These observations, taken together, argue strongly for a phospholipase C-catalyzed breakdown of PI followed by DG-lipase and argue against any significant involvement of phospholipase A2 in PI degradation in mouse pancreas. The formation of substantial amounts of free [14C]AA on stimulation supports the view that, among other things, the phosphoinositide effect in the exocrine pancreas serves to generate arachidonate (and its metabolites). The release of appreciable amounts of free fatty acids and glycerol shows that a significant portion of the DG formed as a result of caerulein-stimulated PI breakdown is not conserved in the phosphoinositide cycle.  相似文献   

5.
Apoptosis of oligodendrocytes is induced by serum growth factor deprivation. We showed that oligodendrocytes and progenitor cells respond to serum withdrawal by a rapid decline of Bcl-2 mRNA expression and caspase-3-dependent apoptotic death. Sublytic assembly of membrane-inserted terminal complement complexes consisting of C5b, C6, C7, C8, and C9 proteins (C5b-9) inhibits caspase-3 activation and apoptotic death of oligodendrocytes. In this study, we examined an involvement of the mitochondria in oligodendrocyte apoptosis and the role of C5b-9 on this process. Decreased phosphatidylinositol 3-kinase and Akt activities occurred in association with cytochrome c release and caspase-9 activation when cells were placed in defined medium. C5b-9 inhibited the mitochondrial pathway of apoptosis in oligodendrocytes, as shown by decreased cytochrome c release and inhibition of caspase-9 activation. Phosphatidylinositol 3-phosphate kinase and Akt activities were also induced by C5b-9, and the phosphatidylinositol 3-phosphate kinase inhibitor LY294002 reversed the protective effect of C5b-9. Phosphatidylinositol 3-phosphate kinase activity was also responsible for the phosphorylation of Bad at Ser112 and Ser136. This phosphorylation resulted in dissociation of Bad from the Bad/Bcl-xL complex in a G(i)alpha-dependent manner. The mitochondrial pathway of oligodendrocyte apoptosis is, therefore, inhibited by C5b-9 through post-translational regulation of Bad. This mechanism may be involved in the promotion of oligodendrocyte survival in inflammatory demyelinating disorders affecting the CNS.  相似文献   

6.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

7.
Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. Stimulated increases in PLC activity correlated with enhanced superoxide generation induced by the stimulus.  相似文献   

8.
A peptide mitogen bombesin, which activates the phospholipase C-protein kinase C signaling pathway, induces a mepacrine-sensitive, dose-dependent increase in the release of [3H]arachidonic acid and its metabolites ([3H]AA) from prelabeled Swiss 3T3 fibroblasts. The effect is temporally composed of two phases, i.e. an initial transient burst that is essentially independent of extracellular Ca2+, and a following sustained phase that is absolutely dependent on the extracellular Ca2+. The initial transient [3H]AA liberation occurs concomitantly with bombesin-induced 45Ca efflux from prelabeled cells: both responses being substantially attenuated by loading cells with a Ca2+ chelator quin2. However, bombesin-induced intracellular Ca2+ mobilization by itself is not sufficient as a signal for the initial transient [3H]AA liberation, since A23187 potently stimulates 45Ca efflux to an extent comparable to bombesin but fails to induce [3H]AA release in the absence of extracellular Ca2+. The second sustained phase of the bombesin-induced [3H]AA release is abolished by reducing extracellular Ca2+ to 0.03 mM, although bombesin effects on phospholipase C and protein kinase C activation are barely affected by the same procedure. A protein kinase C activator phorbol 12,13-dibutyrate induces an extracellular Ca(2+)-dependent, slowly developing sustained increase in [3H]AA release, and markedly potentiates both phases of bombesin-induced [3H]AA release. Down-regulation of cellular protein kinase C completely abolishes all of the effects of phorbol dibutyrate, and partially inhibits the second but not the first phase of bombesin-induced [3H]AA release. These results indicate that bombesin-induced receptor-mediated activation of phospholipase A2 involves multiple mechanisms, including intracellular Ca2+ mobilization for the first phase, protein kinase C activation plus Ca2+ influx for the second phase, and as yet unknown mechanism(s) independent of intracellular Ca2+ mobilization or protein kinase C for both of the phases.  相似文献   

9.
The pathways for degradation of phosphatidylinositol (PI) were investigated in sonicated suspensions prepared from confluent cultures of bovine pulmonary artery endothelial cells. The time courses of formation of 3H-labeled and 14C-labeled metabolites of phosphatidyl-[3H]inositol ([3H]Ins-PI) and 1-stearoyl-2-[14C] arachidonoyl-PI were determined at 37 degrees C and pH 7.5 in the presence of 2 mM EDTA with or without a 2 mM excess of Ca2+. The rates of formation of lysophosphatidyl-[3H]inositol ([3H]Ins-lyso-PI) and 1-lyso-2-[14C] arachidonoyl-PI were similar in the presence and absence of Ca2+, and the absolute amounts of the two radiolabeled lyso-PI products formed were nearly identical. This indicated that lyso-PI was formed by phospholipase A1, and phospholipase A2 was not measurable. In the presence of EDTA, [14C]arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI paralleled release of glycerophospho-[3H]inositol ([3H]GPI) from [3H]Ins-PI. Formation of [3H]GPI was inhibited by treatment with the specific sulfhydryl reagent, 2,2'-dithiodipyridine, and this was accompanied by an increase in [3H]Ins-lyso-PI. In the presence of Ca2+, [14C] arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI was increased 2-fold and was associated with Ca2+-dependent phospholipase C activity. Under these conditions, [3H]inositol monophosphate production exceeded formation of [14C]arachidonic acid-labeled phospholipase C products, diacylglycerol plus monoacylglycerol, by an amount that was equal to the amount of [14C]arachidonic acid formed in excess of [3H]GPI. Low concentrations of phenylmethanesulfonyl fluoride (15-125 microM) inhibited Ca2+-dependent [14C]arachidonic acid release, and the decrease in [14C] arachidonic acid formed was matched by an equivalent increase in 14C label in diacylglycerol plus monoacyclglycerol. These data supported the existence of two pathways for arachidonic acid release from PI in endothelial cells; a phospholipase A1-lysophospholipase pathway that was Ca2+-independent and a phospholipase C-diacylglycerol lipase pathway that was Ca2+-dependent. The mean percentage of arachidonic acid released from PI via the phospholipase C-diacylglycerol lipase pathway in the presence of Ca2+ was 65 +/- 8%. The mean percentage of nonpolar phospholipase C products of PI metabolized via the diacylglycerol lipase pathway to free arachidonic acid was 28 +/- 3%.  相似文献   

10.
P Zeitler  Y Q Wu  S Handwerger 《Life sciences》1991,48(21):2089-2095
Previous investigations from this laboratory have implicated both phospholipase A2 and phospholipase C in the regulation of human placental lactogen release from human trophoblast. To study further the role of endogenous phospholipase A2 and the relationship between phospholipase A2 activation and phosphoinositide metabolism, we examined hPL and [3H]-inositol release from trophoblast cells in response to agents that stimulate or inhibit the endogenous enzyme. Melittin (0.5-2.0 micrograms/ml) stimulated rapid, dose-dependent, and reversible increases in the release of hPL, prostaglandin E, and [3H]-inositol. Mepacrine (0.1-0.25 mM) inhibited this stimulation. However, mepacrine had no effect on the stimulation of hPL and [3H]-inositol release by exogenous arachidonic acid (AA). These results indicate that the stimulation by melittin of phosphoinositide metabolism and hPL release is mediated by initial activation of phospholipase A2. Furthermore, the results support the possibility that AA, released as a consequence of phospholipase A2 activation, can act as a second messenger linking the two phospholipase pathways.  相似文献   

11.
The role(s) of protein kinases in the regulation of G protein-dependent activation of phosphatidylinositol-specific phospholipase C by tumor necrosis factor-alpha was investigated in the osteoblast cell line MC3T3-E1. We have previously reported the stimulatory effects of tumor necrosis factor-alpha and A1F4, an activator of G proteins, on this phospholipase pathway documented by a decrease in mass of PI and release of diacylglycerol. In this study, we further explored the mechanism(s) by which the tumor necrosis factor or A1F4 -promoted breakdown of phosphatidylinositol and the polyphosphoinositides by phospholipase C is regulated. Tumor necrosis factor-alpha was found to elicit a 4–5-fold increase in the formation of [3H]inositol-1,4-phosphate and [3H]inositol-1,4,5-phosphate; and a 36% increase in [3H]inositol-1-phosphate within 5 min in prelabeled cells. [3H]inositol-4-phosphate, a metabolite of [3H]inositol-1,4-phosphate and [3H]inositol-1,4,5-phosphate, was found to be the predominant phosphoinositol product of tumor necrosis factor-alpha and A1F4 -activated phospholipase C hydrolysis after 30 min. In addition, the preincubation of cells with pertussis toxin decreased the tumor necrosis factor-induced release of inositol phosphates by 53%. Inhibitors of protein kinase C, including Et-18-OMe and H-7, dramatically decreased the formation of [3H]inositol phosphates stimulated by either tumor necrosis factor-alpha or A1F4 by 90–100% but did not affect basal formation. The activation of cAMP-dependent protein kinase, or protein kinase A, by the treatment of cells with forskolin or 8-BrcAMP augmented basal, tumor necrosis factor-alpha and A1F4-induced [3H]inositol phosphate formation. Therefore, we report that protein kinases can regulate tumor necrosis factor-alpha-initiated signalling at the cell surface in osteoblasts through effects on the coupling between receptor, G-protein and phosphatidylinositol-specific phospholipase C. J. Cell. Biochem. 65:198–208. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Upon stimulation of human polymorphonuclear neutrophils with platelet-activating factor (PAF), arachidonic acid (AA) is released from membrane phospholipids. The mechanism for AA liberation, a key step in the synthesis of biologically active eicosanoids, was investigated. PAF was found to elicit an increase in the cytoplasmic level of free Ca2+ as monitored by fluorescent indicator fura 2. When [3H] AA-labeled neutrophils were exposed to PAF, the enhanced release of AA was observed with a concomitant decrease of radioactivity in phosphatidylinositol and phosphatidylcholine fractions. The inhibitors of phospholipase A2, mepacrine and 2-(p-amylcinnamoyl)-amino-4-chlorobenzoic acid, effectively suppressed the liberation of [3H]AA from phospholipids, indicating that liberation of AA is mainly catalyzed by the action of phospholipase A2. The extracellular Ca2+ is not required for AA release. However, intracellular Ca2+ antagonists, TMB-8 and high dose of quin 2/AM drastically reduced the liberation of AA induced by PAF, indicating that Ca2+ is an essential factor for phospholipase A2 activation. PAF raised the fluorescence of fura 2 at concentrations as low as 8 pM which reached a maximal level about 8 nM, whereas more than nM order concentrations of PAF was required for the detectable release of [3H]AA. Pretreatment of neutrophils with pertussis toxin resulted in complete abolition of AA liberation in response to PAF. However, the fura 2 response to PAF was not effectively inhibited by toxin treatment. In human neutrophil homogenate and membrane preparations, guanosine 5'-O-(thiotriphosphate) stimulated AA release and potentiated the action of PAF. Guanosine 5'-O-(thiodiphosphate) inhibited the effects of guanosine 5'-O-(thiotriphosphate). These results suggest several points: 1) PAF stimulates human polymorphonuclear neutrophils to liberate AA mainly by the action of phospholipase A2; 2) Ca2+ mobilization alone is not sufficient to stimulate AA release, although Ca2+ is the important factor for phospholipase A2 activation; and 3) a pertussis toxin-sensitive GTP-binding protein may be implicated in activation of phospholipase A2.  相似文献   

13.
The influence of nucleotides and pyrophosphate on phospholipase C from rabbit thymocytes was investigated by using two different methods for the determination of phospholipase C activity. In a first approach the release of radiolabeled inositol phosphates from [3H]inositol-labeled membranes was examined. By a second type of experiment the cleavage of exogenously added radiolabeled phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) was measured. Using internally labeled membranes only guanosine 5'-O-(thiotriphosphate) exhibited a stimulatory effect on the phospholipase C suggesting the involvement of a G-protein. When exogenous [3H]PtdIns-4,5-P2 was used as substrate, cleavage of PtdIns-4,5-P2 was stimulated by all nucleotides investigated; in addition pyrophosphate showed a stimulatory effect. From these data we conclude that the increased cleavage of exogenous PtdIns-4,5-P2 induced by GTP analogues is not conclusive in terms of the involvement of a G-protein. Rather than induced by a G-protein this activation may be caused by an increased substrate accessibility. Our experiments with endogenous substrate clearly established the regulatory role of G-proteins for membrane-bound phospholipase C.  相似文献   

14.
The contribution of phospholipase D (PLD) to the production of phosphatidic acid (PA) and diglyceride (DG) by C5a-stimulated human neutrophils has been studied. Membrane-associated 1-O-alkyl-phosphatidylcholine (alkyl-PC) was double labeled with 3H and 32P by incubating neutrophils with [3H]alkyl-lysoPC and alkyl-[32P]lysoPC. Upon stimulation with recombinant C5a, these labeled neutrophils produce 1-O-alkyl-phosphatidic acid (alkyl-PA) and, in the presence of ethanol, 1-O-alkyl-phosphatidyl-ethanol (alkyl-PEt), containing both 3H and 32P. Formation of radiolabeled alkyl-PEt parallels that of radiolabeled alkyl-PA and requires both extracellular Ca2+ and cytochalasin B. Furthermore, the 3H/32P ratios of alkyl-PA and alkyl-PEt formed during stimulation are very similar to that of th substrate alkyl-PC. These results demonstrate that, in C5a-stimulated neutrophils, alkyl-PA and alkyl-PEt are formed from alkyl-PC almost exclusively by PLD-catalyzed hydrolysis and transphosphatidylation, respectively. Upon C5a stimulation, neutrophils labeled with 3H and 32P also produce 1-O-[3H]alkyl-diglyceride [( 3H]alkyl-DG) and [32P]orthophosphate [( 32P]PO4), but not [32P]phosphocholine. [3H]Alkyl-DG and [32P]PO4 are formed in parallel, although temporally lagging behind alkyl-PA. Propranolol, a PA phosphohydrolase (PPH) inhibitor, decreases the formation of both [3H]alkyl-DG and [32P]PO4, although increasing alkyl-PA accumulation. These data support the conclusion that alkyl-DG is formed from alkyl-PC by the combined activities of PLD and PPH and not by phospholipase C (PLC). Furthermore, by using [3H]acyl-PC-labeled neutrophils, it is demonstrated that, like alkyl-PC, 1-acyl-PC is also degraded sequentially by PLD and PPH to 1-acyl-DG. Propranolol does not inhibit phosphoinositide-specific PLC and yet it causes almost complete inhibition of the total DG mass accumulation in C5a-stimulated neutrophils. We conclude that, in cytochalasin B-treated neutrophils stimulated with C5a, PLD-catalyzed hydrolysis of PC determines the levels of both PA and DG with potentially important ramifications for neutrophil-mediated defense functions.  相似文献   

15.
The relationship between phospholipase A2 and C activation and secretion was investigated in intact human neutrophils and differentiated HL60 cells. Activation by either ATP or fMetLeuPhe leads to [3H]arachidonic acid release into the external medium from prelabelled cells. This response was inhibited when the cells were pretreated with pertussis toxin. When the [3H]arachidonic acid-labelled cells were stimulated with fMetLeuPhe, ATP or Ca2+ ionophore A23187, and the lipids analysed by t.l.c., the increase in free fatty acid was accompanied by decreases in label from phosphatidylinositol and phosphatidylcholine. Moreover, incorporation of label into triacylglycerol and to a lesser extent phosphatidylethanolamine was evident. Activation of secretion was evident with ATP and fMetLeuPhe but not with A23187. The pharmacological specificity of the ATP receptor in HL60 cells was investigated by measuring secretion of beta-glucuronidase, formation of inositol phosphatases and release of [3H]arachidonic acid. External addition of ATP, UTP, ITP, adenosine 5'-[gamma-thio]triphosphate (ATP[S]), adenosine 5'-[beta gamma-imido]triphosphate (App[NH]p), XTP, CTP, GTP, 8-bromo-ATP and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) to intact HL60 cells stimulated inositol phosphate production, but only the first five nucleotides were effective at stimulating secretion or [3H]arachidonic acid release. In human neutrophils, addition of ATP, ITP, UTP and ATP[S] also stimulated secretion from specific and azurophilic granules, and this was accompanied by increases in cytosolic Ca2+ and in [3H]arachidonic acid release. The addition of phorbol 12-myristate 13-acetate (PMA; 1 nM) prior to the addition of either fMetLeuPhe or ATP led to inhibition of phospholipase C activity. In contrast, this had no effect on phospholipase A2 activation, whilst secretion was potentiated. Phospholipase A2 activation by either agonist was dependent on an intact cell metabolism, as was secretion. It is concluded that (1) activation of phospholipase C does not always lead to activation of phospholipase A2, (2) phospholipase A2 is coupled to the receptor independently of phospholipase C via a pertussis-toxin-sensitive G-protein and (3) for secretion to take place, the receptor has to activate both phospholipases C and A2.  相似文献   

16.
Chloroquine inhibition of cholera toxin   总被引:1,自引:0,他引:1  
Cholera toxin (CT) stimulated adenylate cyclase and a phospholipase which elevated cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and arachidonic acid (AA). The AA was quickly converted to prostaglandins (PGs) via the cyclo-oxygenase pathway. Chloroquine exerted minimal inhibition of cAMP levels in CT-treated cells, although CT-induced release of [3H]AA and PGs was blocked completely when the drug was added in concentrations as low as 0.1 mM (50 micrograms/ml). Inhibition of [3H]AA release was complete when chloroquine was added before or within 30 min after CT. The capacity of chloroquine to inhibit either phospholipase C (PLC) or phospholipase A2 (PLA2) could explain the antisecretory activity of this drug.  相似文献   

17.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

18.
We have shown recently that an average of three or more C9 molecules must bind to C5b-8 on Escherichia coli strain J5 to cause direct complement killing in the absence of serum lysozyme. We initially confirmed and extended this observation by showing that deposition of a large number of C5b-9 complexes bearing 1C9 per C5b-8 was not bactericidal for J5. To identify the target site for bactericidal C5b-9 deposition, we measured release of periplasmic and cytoplasmic markers of different size from J5 as the C9:C5b-8 ratio was changed, because the diameter of the C5b-9 channel is known to increase as the C9:C5b-8 ratio increases. To facilitate measurement of release of the periplasmic marker beta-lactamase (BLA), J5 was transformed for high level constitutive TEM-1 BLA production (J5-Amp). Multimeric C9 within C5b-9 (C9:C5b-8 greater than 3) was required to release BLA (m.w. 28,900) from J5-Amp regardless of whether cells bore 310, 560, or 890 C5b-9/organism. Curves of both BLA release and killing vs C9:C5b-8 ratio were sigmoidal and nearly superimposable. Release of the small cytoplasmic marker 86Rb, a potassium analog, also required a minimum C9:C5b-8 ratio of 3:1; specific 86Rb release did not occur in the absence of killing. Release of the large cytoplasmic marker beta-galactosidase (m.w. 505,000) did not occur even at the highest achievable C9:C5b-8 ratio of 11:1, despite greater than 99.9% killing, indicating that there was no dissolution of the peptidoglycan layer due to incomplete removal of serum lysozyme. Complement-mediated killing of J5 requires sufficient damage to the outer membrane or formation of a sufficiently large C5b-9 channel to release the large periplasmic marker BLA. The requirement of multimeric C9 for 86Rb release suggests that at low C9:C5b-8 ratios, either C5b-9 does not have access to the cytoplasmic space or that the J5 K+ transport systems are able to compensate for putative C5b-9 channels.  相似文献   

19.
The liberation of arachidonic acid (AA) was investigated in platelet membranes prelabelled with [3H]AA. In rat platelet membranes, Ca2+ at concentrations over several hundred nanomolar induced [3H]AA release, with a concurrent decrease in 3H radioactivity of phosphatidylethanolamine and phosphatidylcholine. Some 4-6% of total radioactivity incorporated into platelet membrane lipids was released at 1-10 microM-Ca2+, which is nearly equivalent to that attained in agonist-stimulated platelets. Formation of lysophospholipids in [3H]glycerol-labelled membranes and decrease in [3H]AA liberated by the phospholipase A2 inhibitors mepacrine and ONO-RS-082 suggest that [3H]AA release is mainly catalysed by phospholipase A2. In intact platelets agonist-stimulated [3H]AA release was markedly decreased in the absence of extracellular Ca2+ or in the presence of the intracellular Ca2+ chelator quin 2. These results indicate that in rat platelets the rise of intracellular Ca2+ plays a primary role in the activation of phospholipase A2. In contrast, Ca2+ even at high millimolar concentrations did not effectively stimulate [3H]AA release in human platelet membranes. Thus factor(s) additional to or independent of Ca2+ is required for the liberation of AA in human platelets.  相似文献   

20.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号