首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal endothelium: a modified method for cultivation   总被引:1,自引:0,他引:1  
A modified method for establishing cultures of rabbit corneal cells is described. The new technique utilized a Lucite disc in combination with a Tygon ring for growth of pure cell cultures and was compared with an explant method for growing cells. Each method provided adequate cell cultures for biochemical or ultrastructure studies of rabbit corneal cells, but the ring and disc method described here allowed the isolation of specific cell types without the interference of stromal cell contamination.  相似文献   

2.
Alternatives to the Draize rabbit eye irritation test are currently being investigated. Because of morphological and biochemical differences between the rabbit and the human eye, continuous human cell lines have been proposed for use in ocular toxicology studies. Single cell-type monolayer cultures in culture medium have been used extensively in ocular toxicology. In the present study, an SV40-immortalised human corneal epithelial (HCE) cell line was characterised immunohistochemically, by using 13 different monoclonal antibodies to cytokeratins (CKs), ranging from CK3 to CK20. The results from the monolayer HCE cell cultures were compared with those from the corneal epithelium of human corneal cryostat sections. Previous studies have shown that the morphology of the HCE cell is similar to that of primary cultured human corneal epithelial cells, and that the cells express the cornea-specific CK3. In the study reported here, we show that the cell line also expresses CKs 7, 8, 18 and 19. These CKs are typically expressed by simple epithelial cells, and are not found in the human cornea in vivo. Therefore, the monolayer HCE cell line grown in culture medium does not express the CK pattern that is typical of human corneal epithelium. This should be taken into consideration when using HCE cell cultures in similar single cell-type experiments for ocular toxicology.  相似文献   

3.
The short supply of donor corneas is exacerbated by the unsuitability of donors with insufficient endothelial cell density. Few studies have investigated promoting corneal endothelial cell proliferation to increase the endothelial cell density. We hypothesize that pre‐transplantation treatment of proliferative tissue‐cultivated corneas may increase corneal endothelial cell density. We observed that the airlift cultures were superior to immersion cultures with respect to both transparency and thickness. In this tissue culture system, we observed that lysophosphatidic acid increased the rabbit corneal endothelial cell density, number of BrdU‐positive cells and improve wound healing. We also observed an indirect effect of lysophosphatidic acid on corneal endothelial cell proliferation mediated by the stimulation of interleukin‐1β secretion from stromal cells. Human corneal tissues treated with lysophosphatidic acid or interleukin‐1β contained significantly more Ki‐67‐positive cells than untreated group. The lysophosphatidic acid‐ or interleukin‐1β‐treated cultured tissue remained hexagon‐shaped, with ZO‐1 expression and no evidence of the endothelial‐mesenchymal transition. Our novel protocol of tissue culture may be applicable for eye banks to optimize corneal grafting.  相似文献   

4.
We have examined the ability of primary adult rabbit skin cells to regulate collagenase production in vitro. Dermal cells constitutively produce collagenase in culture, and enzyme production by these cells can be influenced by epithelial cells. Co-culture with skin epidermal cells resulted in more enzyme production by dermal cells, whereas co- culture with corneal epithelial cells yielded less enzyme activity. Connective tissue cells from a different source, cornea, also produced collagenase when co-cultured with skin epidermal cells, although the stromal cells alone made no enzyme. The drug cytochalasin B had very little influence on collagenase production by dermal cells, either alone or in co-culture with epidermal cells, but did significantly potentiate enzyme production by corneal stromal cells responding to epidermal effector molecules. Epidermal-cell-conditioned medium from both fetal and adult rabbit skin was a potent source of stimulators (apparent mol wt 20,500 and 55,000) of connective-tissue-cell collagenase production. Stimulator production by epidermal cultures was cell density dependent. Optimal production of stimulators occurred in adult cultures containing 10(6) epidermal cells/ml of medium, and in fetal cultures containing 10(5) cells/ml. Inhibitors of connective tissue cell enzyme production were not detected in conditioned medium from either adult or fetal epidermal cells.  相似文献   

5.
In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."  相似文献   

6.
Histiostoma feroniarum, like other histiostomatid mites, possesses peculiar ring organs that are visible under the light microscope as ventrally located, characteristic rings of sclerotized cuticle. The ring organ is composed of three elements: a disc of modified cuticle, ring organ cells located underneath the disc, and an "empty" chamber frequently visible between the cuticular disc and the cells. The cuticle of the disc is not perforated and differs from the surrounding unmodified cuticle as revealed by special staining developed for light microscopy and by electron microscopy. The ring organ cells show a polarity, with a practically smooth apical surface and an extremely folded basal membrane. The basal invaginations reach the apical cell portion, where they form tubular canaliculi distributed beneath the apical cell membrane. The cytoplasm contains many mitochondria, which are usually in contact with the cell membrane invaginations. Structurally, the ring organ cells closely resemble the transport cells described in osmoregulatory organs both in water-inhabiting and terrestrial arthropods. Thus, our results support earlier suggestions of an osmoregulatory function performed by sclerotized rings (=ring organs), as an adaptation to aqueous environments. A possible homology with similar organs of other mites is discussed.  相似文献   

7.
Summary A technique for the short-term culture of pure populations of rabbit corneal endothelial and epithelial cells has been developed. Rabbit corneas were placed on concave agarose surfaces, treated briefly with a solution of trypsin and ethylenediamine tetracetic acid, and transferred, either epithelial cell surface or endothelial cell surface down, to microscope slide culture chambers. Within 6 to 12 h the epithelial cells or endothelial cells attached to the slide chamber surface and the cornea was removed, leaving behind a pure population of cells which spread out and grew to fill the surface of the slide chamber. This technique provides a simple and economic means for the reproducible initiation of primary cultures of rabbit corneal epithelial and endothelial cells for us in a variety of experiments. This study was supported in part by Public Health Service grants EY03150, EY02580, and EY02377 from the National Eye Institute, National Institutes of Health, Bethesda, MD, and a Foreign Fellowship (Dr. Xie) from Research to Prevent Blindness, Inc., New York, NY.  相似文献   

8.
Aspects of the initial phase of aggregation in vitro of dissociated imaginal disc cells from Drosophila melanogaster are described. Using the methods described certain interdisc differences in the percent decrease in single cell units during the first hour of aggregation can be demonstrated. In addition it is shown that prospective notum cells isolated from the dorsal mesothoracic disc show less of a decrease than do prospective wing cells. This difference shows up in a variety of different wild-type stocks and in several mutant stocks as well. Prospective notum cells from the mutation fu59 show only a limited ability to adhere to one another, while the percentage of single cell units from prospective wing blade cells from r9 larvae grown on pyrimidine-poor medium decrease less compared to cells from the same stock grown on RNA-supplemented medium. There is a significantly greater decrease in the percent single cell units in cultures of prospective eye cells than in cultures of prospective antennal cells. Furthermore, cells from the antennal disc of larvae bearing the homeotic mutation ssa show a significantly lower decrease in single cell units when grown at restrictive temperatures. In contrast, antennal disc cells from the homeotic mutation ophthalmoptera; eyeless Dominant, a mutation which affects the eye disc, are unaffected, while cells from the eye disc are slightly less able to reassociate with one another.  相似文献   

9.
《Cytotherapy》2014,16(1):64-73
Background aimsMesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation.MethodsMSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells.ResultsHuman L-MSC cultures were typically CD34, CD45 and HLA-DR and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation.ConclusionsL-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.  相似文献   

10.
11.
The production and localization of laminin, as a function of cell density (sparse versus confluent cultures) and growth stage (actively growing versus resting cultures), has been compared on the cell surfaces of cultured vascular and corneal endothelial cells. Comparison of the abilities of the two types of cells to secrete laminin and fibronectin into their incubation medium reveals that vascular endothelial cells can secrete 20-fold as much laminin as can corneal endothelial cells. In contrast, both cell types produce comparable amounts of fibronectin. Furthermore, if one compares the secretion of laminin and fibronectin as a function of cell growth, it appears that the laminin released into the medium by either vascular or corneal endothelial cells, is a function of cell density and cell growth, since this release is most pronounced when the cells are sparse and actively growing, and decreases by 10- and 30-fold, respectively, when either vascular or corneal endothelial cell cultures become confluent. With regard to fibronectin secretion, no such variation can be seen with vascular endothelial cell cultures, regardless of whether they are sparse and actively growing or confluent and resting. Corneal endothelial cell cultures, demonstrated a twofold increase in fibronectin production when they were confluent and resting as compared to when they were sparse and actively growing. When the distribution of laminin versus fibronectin within the apical and basal cell surfaces of cultured corneal and vascular endothelial cells is compared, one can observe that unlike fibronectin, which in sparse and subconfluent cultures can be seen to be associated with both the apical cell surface. In confluent cultures, laminin can be found associated primarily with the extracellular matrix beneath the cell monolayer, where it codistributes with type IV collagen.  相似文献   

12.
Primary cultures of rabbit corneal endothelial cells supported growth of trachoma agent, as evidenced by the production of inclusions and an increase of infectivity titers.  相似文献   

13.
目的:探讨体外诱导兔骨髓间充质干细胞(BMSCs)分化为角膜基质细胞的可行性,并观察纤维蛋白胶(FG)作为细胞支架材料的效果。方法:密度梯度法获得BMSCs,体外诱导实验将细胞分为三组:对照组用普通培养皿、BMSCs培养条件并不加角膜基质细胞共培养的条件下培养;非FG共培养组使用普通培养皿并与角膜基质细胞共培养诱导BMSCs分化;FG共培养组使用铺有FG的培养皿并与角膜基质细胞共培养诱导BMSCs分化。培养1w及2w后用WestenBlot法检测三组细胞Keratocan的表达,在相差显微镜下进行形态学观察。结果:原代培养的BMSCs表现出成体干细胞潜能,CD29染色阳性,符合骨髓基质干细胞的特征。诱导培养2周后对照组BMSCs融合成单层、呈条索状生长;非FG共培养组部分细胞体积变小、多突起,局部呈梭形生长;FG共培养组细胞生长状态良好,部分细胞呈梭形或纺锤形,与FG生物相容性好。Westen检测结果:BMSCs细胞在纤维蛋白胶或普通培养皿上特定培养条件下均能诱导表达角膜基质细胞的特异性蛋白Keratocan。结论:骨髓间充质干细胞在条件培养基下可分化为角膜基质细胞,有望作为治疗角膜疾病及角膜组织工程的备选材料,纤维蛋白胶组织相容性好,可为组织工程提供移植细胞片。  相似文献   

14.
The factors required for the active proliferation of low-density rabbit costal chondrocytes exposed to 9:1 (v/v) mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium have been defined. Low-density primary cultures of rabbit costal chondrocytes proliferated actively when the medium was supplemented with high-density lipoprotein (300 micrograms/ml), transferrin (60 micrograms/ml), fibroblast growth factor (FGF) (1 ng/ml), hydrocortisone (10(-6) M), and epidermal growth factor (EGF) (30 ng/ml). Insulin, although it slightly decreased the final cell density, was required for reexpression of the cartilage phenotype at confluence. Optimal proliferation of low-density chondrocyte cultures was only observed when dishes were coated with an extracellular matrix (ECM) produced by cultured corneal endothelial cells, but not on plastic. Furthermore, serum-free chondrocyte cultures seeded at low density and maintained on ECM-coated dishes gave rise to a homogeneous cartilage-like tissue composed of spherical cells. These chondrocytes therefore seem to provide a good experimental system for analyzing factors involved in supporting proliferation of chondrocytes and their phenotypic expression.  相似文献   

15.
Synchronous Growth and Sporulation of Bacillus megaterium   总被引:3,自引:2,他引:1       下载免费PDF全文
Filtration of late log-phase cultures of Bacillus megaterium ATCC 19213 grown on defined sucrose salts medium (SS) or SS plus glutamate medium (SSG) through nine layers of Whatman no. 40 filter paper in a fritted-glass disc Büchner funnel resulted in filtrates containing cells which showed synchronous growth and proceeded to sporulation. SS cells completed one synchronous division after filtration; sporulation ensued after the cessation of growth. SSG cells completed two synchronous divisions and sporulation occurred during the second division. A high degree of synchrony of vegetative growth of SSG cells was evident by the stepwise pattern of growth, by the doubling of cell numbers at each division, the high division index, and by the rapid formation of sporulation cell types and homogeneity of cell types in the filtered cultures when compared with asynchronous cultures. Because the described system gives both good growth and sporulation synchrony, the method should be useful in delineating early events in sporulation and their regulation.  相似文献   

16.
Li C  Yin T  Dong N  Dong F  Fang X  Qu YL  Tan Y  Wu H  Liu Z  Li W 《Journal of cellular physiology》2011,226(9):2429-2437
Oxygen concentration has been shown to be crucial in the proliferation and differentiation of various types of cells, while the impact of oxygen tension on the lineage commitment of epithelial cells remains elusive. In this study, we investigated the effect of hypoxia on the differentiation of corneal limbal epithelium using an ex vivo squamous metaplasia model. Under normoxic conditions when exposed to air, the hyperproliferation and abnormal epidermal-like differentiation of human corneal limbal epithelium was induced, whereas when exposed to air under hypoxic conditions, although we observed augmented proliferation, the abnormal differentiation was inhibited. The Notch signaling pathway was activated in hypoxic cultures, whereas the p38 MAPK signaling pathway was downregulated. The addition of Notch inhibitor under hypoxic conditions restored the activation of p38 MAPK and resulted in the recidivation of limbal epithelial cells to epidermal-like differentiation. Moreover, the epidermal-like differentiation of rabbit limbal epithelial cells was also blocked under hypoxic conditions in corneal epithelial cell sheets engineered ex vivo. We concluded that hypoxia can prevent abnormal differentiation while enhancing the proliferation of corneal limbal epithelial cells. Hypoxia coupled with air exposure can be used in the tissue engineering of corneal limbal epithelium.  相似文献   

17.
Summary A widely utilized rabbit corneal cell line, SIRC, was characterized ultrastructurally and immunohistologically. Although SIRC cells are often described as being of epithelial origin, important ultrastructural and antigenic characteristics indicate that these cells are fibroblastic and not epithelial. SIRC cells lack desmosomes, cytoplasmic filaments, and cytokeratin—structures that are characteristic of corneal epithelial cells. By contrast, the dendritic morphology, presence of vimentin, and the extensive dense accumulations of ribosomes and rough endoplasmic reticulum are consistent with a fibroblastic phenotype. Collectively, the morphology, ultrastructural features, and antigenic composition favor the hypothesis that SIRC cells are fibroblastic cells (keratocytes) and not corneal epithelial cells. This work supported in part by grant EY 07641 from the National Institutes of Health, Bethesda, MD, and an unrestricted grant from Research to Prevent Blindness, Inc., New York.  相似文献   

18.
To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium containing chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride,culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sulfate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to confluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical researches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.  相似文献   

19.
Summary This paper presents a reliable method for establishing pure cultures of the three types of corneal cells. This is believed to be the first time, corneal cells have been cultured from fetal pig corneas. Cell growth studies were performed in different media. Subcultures of the three corneal cell types were passaged until the 30th generation without their showing signs of senescence. For engineering an in vitro cornea, corneal epithelial cells were cultured over corneal stromal cells in an artificial biomatrix of collagen with an underlying layer of corneal endothelial cells. The morphology, histology, and differentiation of the in vitro cornea were investigated to determine the degree of comparability to the cornea in vivo. The in vitro construct displayed signs of transition to an organotypic phenotype of which the most prominent was the formation of two basement membranes.  相似文献   

20.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号