首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary D-Serine deaminase hyperproducing mutants ofE. coli lose about one half of their original activity during passaging. On the other hand, the mutant hyperproducing tryptophanase is completely stable.  相似文献   

2.
Nine independent mutants deficient in tryptophanase activity were isolated. Each mutation was transferred to a specialized transducing phage that carries the tryptophanase region of the Escherichia coli chromosome. The nine phages thus produced, and a tenth carrying a previously characterized tryptophanase mutation, were used to lysogenize a bacterial strain harbouring a mutation in the tryptophanase structural gene and also a suppressor of polarity. In no case was complementation observed; we conclude that there is no closely linked positive regulatory gene for tryptophanase.  相似文献   

3.
From strains of Escherichia coli that carry deletions of the trp region, five different mutants were isolated that were capable of synthesizing tryptophanase at unusually high rates in conditions of severe catabolite repression. Notwithstanding the comparative insensitivity to catabolite repression, the rates of tryptophanase synthesis in the mutants were greatly diminished by the introduction of a defective gene for adenyl cyclase. Each of the mutants segregated variants of the parental type. The results of genetic analysis appear to be consistent with the mutants arose by duplication of the tryptophanase gene.  相似文献   

4.
Summary A mutant of E. coli has been isolated that is temperature-sensitive in respect of tryptophanase. When incubated at 60°C, cell-free extracts of the mutant suffer inactivation of enzyme activity much more rapidly than similar extracts of the wild type. After lysogeny with a specialized transducing phage carrying the wild-type tryptophanase gene, the mutant is able to synthesize tryptophanase that is wild-type in its response to treatment at 60°C. It is concluded that the mutation lies in the structural gene for the enzyme.Two further mutants have been isolated that synthesize tryptophanase constitutively. One mutation renders synthesis of the enzyme indifferent to the presence of inducer; the other mutation allows synthesis of the enzyme in the absence of inducer at about 35% of the fully induced wild-type rate. Neither mutation alleviates catabolite repression. Genetic mapping shows that the constitutive mutations lie very close to the structural-gene mutation, on the side of the structural gene distant from bglR.  相似文献   

5.
Two mutants are described in which the synthesis of tryptophanase is unusually insensitive to catabolite repression. Neither mutation is linked by transduction to the tryptophane structural gene, neither mutation renders the synthesis of beta-galactosidase insensitive to catabolite repression, and the mutations do not permit tryptophanase to be synthesized in strains deficient in adenyl cyclase. During growth in glucose-minimal medium the mutants maintained a similar intracellular concentration of cyclic AMP to their wild-type parent; but since in the wild type the concentration of cyclic AMP was the same in glycerol-minimal medium as in glucose-minimal medium, it is doubtful whether catabolite repression is mediated by measurable changes in the concentration of this nucleotide.  相似文献   

6.
Biotechnology Letters - Constitutive tryptophanase hyperproducing mutants of Escherichia coli were isolated. The specific enzyme activities of these mutants are 3–5 times higher than those of...  相似文献   

7.
From a strain lacking adenyl cyclase and the catabolite-sensitive gene activator protein, two mutants were isolated that can synthesize tryptophanase. Each mutation is extremely closely linked to the tryptophanase structural gene. The mutations differ from one another in the rate of synthesis of tryptophanase that they permit in the genetic background in which they were isolated; they differ from one another and also from the wild type in the maximum rate of synthesis of tryptophanase that they permit in a genetic background with intact adenyl cyclase and catabolite-sensitive gene activator protein. Both mutations appear to lie in the tryptophanase promoter.  相似文献   

8.
Pyridoxal 5′-phosphate-bound Sepharose (SP) was prepared by coupling pyridoxal 5′-phosphate (PLP) to diazotized p-aminobenzamidohexyl-Sepharose. A derivative of pyridoxine having an absorption maximum at ca. 316 nm (possibly, 6-amino-pyridoxine 5′-phosphate) was liberated from SP by treatment with 0.1 M sodium dithionite at pH 9.0. SP catalyzed the cleavage of tryptophan in the presence of Cu2+, a typical non-enzymatic model of tryptophanase reaction. From the spectrophotometric data and catalytic activity, it was estimated that SP contained about 1.5 μmoles of bound PLP per gram of Sepharose. Tetrameric apotryptophanase was immobilized by incubation with SP, followed by reduction with NaBH4. The resulting immobilized tryptophanase retained ca. 60 % of the catalytic activity of free tryptophanase used. This method was much superior to other methods used commonly for preparation of immobilized enzymes.  相似文献   

9.
C Yanofsky  V Horn    P Gollnick 《Journal of bacteriology》1991,173(19):6009-6017
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.  相似文献   

10.
The induction of tryptophanase was not affected by rifampicin in the rifampicin-resistant mutant ofVibrio el tor while the antibiotic inhibited the induction of tryptophanase in the normal strain at level of ribonucleic acid and protein synthesis.  相似文献   

11.
Summary Tryptophanase, which has the very strict stereospecificity to L-tryptophan under ordinary condition, becomes active to D-tryptophan in highly concentrated diammoniumhydrogen phosphate solution. The reaction process of D-tryptophan degradation is studied in terms of kinetics. Diammoniumhydrogen phosphate acts on tryptophanase as activator below 3.1 M, and as noncompetitive inhibitor over it. Additionally, the pathway of the reaction is provided on the basis of kinetic parameters.Abbreviations TPase tryptophanase - L-Trp L-tryptophan - D-Trp D-tryptophan - DAP diammoniumhydrogen phosphate - PLP pyridoxal 5-phosphate  相似文献   

12.
Catabolite repression of tryptophanase in Escherichia coli   总被引:16,自引:14,他引:2       下载免费PDF全文
Catabolite repression of tryptophanase was studied in detail under various conditions in several strains of Escherichia coli and was compared with catabolite repression of beta-glactosidase. Induction of tryptophanase and beta-galactosidase in cultures grown with various carbon sources including succinate, glycerol, pyruvate, glucose, gluconate, and arabinose is affected differently by the various carbon sources. The extent of induction does not seem to be related to the growth rate of the culture permitted by the carbon source during the course of the experiment. In cultures grown with glycerol as carbon source, preinduced for beta-galactosidase or tryptophanase and made permeable by ethylenediaminetetraacetic acid (EDTA) treatment, catabolite repression of tryptophanase was not affected markedly by the addition of cAMP (3',5'-cyclic adenosine monophosphate). Catabolite repression by glucose was only partially relieved by the addition of cAMP. In contrast, under the same conditions, cAMP completely relieved catabolite repression of beta-galactosidase by either pyruvate or glucose. Under conditions of limited oxygen, induction of tryptophanase is sensitive to catabolite repression; under the same conditions, beta-galactosidase induction is not sensitive to catabolite repression. Induction of tryptophanase in cells grown with succinate as carbon source is sensitive to catabolite repression by glycerol and pyruvate as well as by glucose. Studies with a glycerol kinaseless mutant indicate that glycerol must be metabolized before it can cause catabolite repression. The EDTA treatment used to make the cells permeable to cAMP was found to affect subsequent growth and induction of either beta-galactosidase or tryptophanase much more adversely in E. coli strain BB than in E. coli strain K-12. Inducation of tryptophanase was reduced by the EDTA treatment significantly more than induction of beta-galactosidase in both strains. Addition of 2.5 x 10(-3)m cAMP appeared partially to reverse the inhibitory effect of the EDTA treatment on enzyme induction but did not restore normal growth.  相似文献   

13.
14.
In recent years, the human gut microbiome has been recognised to play a pivotal role in the health of the host. Intestinal homeostasis relies on this intricate and complex relationship between the gut microbiota and the human host. While much effort and attention has been placed on the characterization of the organisms that inhabit the gut microbiome, the complex molecular cross-talk between the microbiota could also exert an effect on gastrointestinal conditions. Blastocystis is a single-cell eukaryotic parasite of emerging interest, as its beneficial or pathogenic role in the microbiota has been a subject of contention even to-date. In this study, we assessed the function of the Blastocystis tryptophanase gene (BhTnaA), which was acquired by horizontal gene transfer and likely to be of bacterial origin within Blastocystis. Bioinformatic analysis and phylogenetic reconstruction revealed distinct divergence of BhTnaA versus known bacterial homologs. Despite sharing high homology with the E. coli tryptophanase gene, we show that Blastocystis does not readily convert tryptophan into indole. Instead, BhTnaA preferentially catalyzes the conversion of indole to tryptophan. We also show a direct link between E. coli and Blastocystis tryptophan metabolism: In the presence of E. coli, Blastocystis ST7 is less able to metabolise indole to tryptophan. This study examines the potential for functional variation in horizontally-acquired genes relative to their canonical counterparts, and identifies Blastocystis as a possible producer of tryptophan within the gut.  相似文献   

15.
Tryptophanase from Escherichia coli was studied with respect to its interactions with L-alanine, beta-chloro-L-alanine, L-phenylalanine, L-methionine, L-threonine, beta-phenyl-DL-serine (threo form) and also with a new tryptophan analog oxindolyl-L-alanine. Slow transamination of L-alanine in the active site of the enzyme was observed. Some evidence is presented which indicates that the side transamination reaction occurs during incubation of tryptophanase with an adequate substrate, beta-chloro-L-alanine. Absorption and circular dichroism (CD) spectra of the enzyme-quasisubstrate complexes have been recorded. Addition of beta-phenylserine and threonine to the enzyme induces a decrease of absorbance at 337 nm and an increase of absorbance at 420 nm. The spectral changes are associated with inversion of the CD sign, i.e. with disappearance of positive CD in the 420 nm band and appearance of negative CD in this band. It is inferred that beta-phenylserine and threonine form an external coenzyme-substrate aldimine which undergoes slow conversion to give a keto acid and the free enzyme. Addition of oxindolylalanine to tryptophanase results in the formation of an intense narrow absorption band at 504 nm with a shoulder at about 475 nm. This band belongs to a quinonoid intermediate. A positive CD is seen in the 504 nm band; the dissymmetry factor (delta A/A) in this band is much smaller than that in the absorption bands of the free enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Escherichia coli adherence to biotic and abiotic surfaces constitutes the first step of infection by promoting colonization and biofilm formation. The aim of this study was to gain a better understanding of the relationship between E. coli adherence to different biotic surfaces and biofilm formation on abiotic surfaces. We isolated mutants defective in A549 pneumocyte cells adherence, fibronectin adherence, and biofilm formation by random transposition mutagenesis and sequential passages over A549 cell monolayers. Among the 97 mutants tested, 80 were decreased in biofilm formation, 8 were decreased in A549 cells adherence, 7 were decreased in their adherence to fibronectin, and 17 had no perturbations in either of the three phenotypes. We observed a correlation between adherence to fibronectin or A549 cells and biofilm formation, indicating that biotic adhesive factors are involved in biofilm formation by E. coli. Molecular analysis of the mutants revealed that a transposon insertion in the tnaA gene encoding for tryptophanase was associated with a decrease in both A549 cells adherence and biofilm formation by E. coli. The complementation of the tnaA mutant with plasmid-located wild-type tnaA restored the tryptophanase activity, epithelial cells adherence, and biofilm formation on polystyrene. The possible mechanism of tryptophanase involvement in E. coli adherence and biofilm formation is discussed.  相似文献   

17.
A total of 633 anaerobic bacteria were examined for tryptophanase production using a rapid method which distinguishes within 5 to 180 minutes between anaerobes that contain tryptophanase and those that do not. Of the 196 tryptophanase-positive isolates tested, 99% showed tryptophanase activity within 2 hours as compared with 94.4% in 24 hours by a conventional method. A total of 299 tryptophanase-negative organisms were tested. Ninety three percent of these remained negative after 24 hours as compared with 95.3% when tested with a 24-h conventional method. Additional information was obtained on the sensitivity of this test and the time-dependent production of indole by tryptophanase.  相似文献   

18.
Summary Starting from anileu auxotroph ofFusarium graminearum producing high levels of the mycotoxin zearalenone, selection after UV irradiation gave low-producing mutants of essentially normal morphology,zea,ileu. Heterokaryons betweenzea,ileu strains and an auxotrophic strainlz,inos derived from the lazy morphological mutant ofFusarium graminearum, which has abnormal morphology and also produces little or n zearalenone, produced significant levels (over 50% of the wild-type level) of mycotoxin. The observation confirms views as to the regulatory nature of thelazy mutation.  相似文献   

19.
For the effective production of l-tryptophan from indole and l-serine by the action of tryptophanase from Alcaligenes faecalis, cloning of the enzyme gene (tna) was studied. A. faecalis was transformed not only by broad host range plasmid pKT231 but also by pLG338, pACYC177, and pBR322 derivatives. A recombinant tna plasmid was isolated by shotgun experiments with Escherichia coli K-12, and the isolated tna gene located on the 3.2 kb DNA fragment. Tryptophanase activity of A. faecalis transformed by the tna recombinant plasmid was about 4-fold higher than that of wild cells.  相似文献   

20.
Catalytic studies on tryptophanase from Bacillus alvei   总被引:2,自引:2,他引:0       下载免费PDF全文
Tryptophanase from Bacillus alvei exhibited the expected spectrum of pyridoxal-5'-phosphate-dependent reactions. It exhibited l-serine dehydratase, S-alkyl-cysteine lyase, and cysteine desulfhydrase activities, as well as the classic tryptophanase reactions (all beta elimination reactions). It also acted as a tryptophan synthetase (beta replacement reactions) using indole plus l-serine or l-cysteine or S-methyl-cysteine as substrates. The beta elimination reactions are simple competitors of the replacement reactions for the same amino acid substrates. The kinetics of the reactions were examined in detail using a coupled continuous spectrophotometric assay. A product (indole) inhibition study of the beta elimination reaction with tryptophan showed simple, noncompetitive inhibition; the same study with allosubstrates showed noncompetitive inhibition by indole. These product studies provided data on the beta replacement reactions as well. The results are discussed in terms of a mechanism for the B. alvei tryptophanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号