首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
For the purpose of mass producingMonascus red pigments optimum medium composition and environmental conditions were investigated in submerged flask cultures. The optimum carbon and nitrogen sources were determined to be 30 g/L of glucose and 1.5 g/L of monosodium glutamate (MSG). Of the three metals examined, Fe2+ showed the stronges stimulatory effect on pigment production and some stimulatory effect was also found in Mn2+. Optimum pH and agitation speed were determined to be 6.5 and 700 rpm, respectively. Under the optimum culture conditions batch fermentation showed that the maximum biomass yield and specific productivity of red pigments were 0.20 g DCW/g glucose and, 32.5 OD500 g DCW−1 h−1, respectively.  相似文献   

2.
Saccharina (Laminaria) japonica, a safe, cheap, and readily available macroalga can be used as a substrate for various microbial fermentations. This work investigated the feasibility of S. japonica as a substrate for production of pigments by the fungus Talaromyces amestolkiae GT11 in solid-state fermentation without additional salt and/or nitrogen sources. Under optimized conditions, the pigment exhibited maximum absorption spectrum at 410 (yellow) and 510 nm (red), and the pigment yield of 1,153.5 (yellow) and 506.2 (red) OD units g?1 of dry fermented substrate were achieved with a particle size of 1.0 mm and pH 7, although visually the pigment was reddish in color. The optimum incubation period, pH, moisture, inoculum size, and temperature were observed to be at 192 h, pH 7.0, 80 % (w/w) moisture, 1.8?×?106 spores mL?1 of inoculum g-1 of dry substrate and 28 °C. Hence, this study indicates the suitability of utilization of S. japonica as a substrate for natural pigment production by T. amestolkiae GT11 which can be used in food, cosmetics and pharmaceutical industries for various applications.  相似文献   

3.
This work was aimed at producing inulinase by solid-state fermentation of sugarcane bagasse, using factorial design to identify the effect of corn steep liquor (CSL) and soybean bran concentration, particle size of bagasse and size of inoculum. Maximum inulinase activity achieved was 250 U per g of dry substrate (gds) at 20% (w/w) of CSL, 5% (w/w) of soybean bran, 1 × 1010 cells mL−1 and particle size of bagasse in the range 9/32 mesh. The use of soybean bran decreased the time to reach maximum activity from 96 to 24 h and the maximum productivity achieved was 8.87 U gds−1 h−1. The maximum activity was obtained at pH 5.0 and 55.0°C. Within the investigated range, the enzyme extract was more thermostable at 50.0°C, showing a D-value of 123.1 h and deactivation energy of 343.9 kJ gmol−1. The extract showed highest stability from pH 4.5 to 4.8. Apparent K m and V max are 7.1 mM and 17.79 M min−1, respectively.  相似文献   

4.
The optimization of process parameters for high inulinase production by the marine yeast strain Cryptococcus aureus G7a in solid-state fermentation (SSF) was carried out using central composite design (CCD), one of the response surface methodologies (RSMs). We found that moisture, inoculation size, the amount ratio of wheat bran to rice husk, temperature and pH had great influence on inulinase production by strain G7a. Therefore, the CCD was used to evaluate the influence of the five factors on the inulinase production by strain G7a. Then, five levels of the five factors above were further optimized using the CCD. Finally, the optimal parameters obtained with the RSM were the initial moisture 61.5%, inoculum 2.75%, the amount ratio of wheat bran to rice husk 0.42, temperature 29 °C, pH 5.5. Under the optimized conditions, 420.9 U g−1 of dry substrate of inulinase activity was reached in the solid-state fermentation culture of strain G7a within 120 h whereas the predicted maximum inulinase activity of 436.2 U g−1 of inulinase activity of 436.2 U g−1 of dry weight was derived from the RSM regression. This is the highest inulinase activity produced by the yeast strain reported so far. A large amount of monosaccharides and oligosaccharides were detected after inulin hydrolysis by the crude inulinase.  相似文献   

5.
Nigerloxin, a new and potent lipoxygenase inhibitor, was discovered in our laboratory through solid-state fermentation of wheat bran by Aspergillus niger V. Teigh (MTCC-5166). The aim of this study is to investigate the possibility of using different agro-industrial residues as nutritional supplements along with wheat bran to enhance the production of nigerloxin. Nigerloxin produced by SSF was quantified spectrophotometrically at 292 nm. The results indicate that the inhibitor production was influenced by the type of solid substrate supplemented, moisture content, pH and size of the inoculum. Individually optimized supplements were tested in different combinations to determine their effects on nigerloxin production. A twofold increase in the production of nigerloxin (4.9 ± 0.3 mg gds−1) was achieved by supplementing wheat bran with 10% w/w sweet lemon peel and 5% v/w methanol at optimized process parameters, that is, an initial moisture content of 65% v/w and incubation period of 6 days with an initial inoculum size of 2 ml (8 × 105 spores gds−1). Nigerloxin production was stable between pH of 4 and 5.  相似文献   

6.
The optimization of nutrient levels for chitinase production by Enterobacter sp. NRG4 in solid-state fermentation conditions (SSF) was carried out using response surface methodology (RSM) based on central composite design (CCD). The design was employed by selecting wheat bran-to-flake chitin ratio, moisture level, inoculum size, and incubation time as model factors. The results of first-order factorial design experiments showed that all four independent variables have significant effects on chitinase production. The optimum concentrations for chitinase production were wheat bran-to-flake chitin ratio, 1; moisture level, 80%; inoculum size, 2.6 mL; and incubation time, 168 h. Using this statistical optimization method, chitinase production was found to increase from 616 U · g−1 dry weight of solid substrate to 1475 U · g−1 dry weight of solid substrate.  相似文献   

7.
This work describes carotenoid pigment production by the red bacterium Brevibacterium linens covering strain diversity, kinetic and analytical aspects. Pigment production of 23 B. linens strains ranged from 0.05 to 0.60 mg pigments L−1 culture, with specific productivity from 0.2 to 0.6 mg pigments per g dry biomass. The pigment production time curve showed a sigmoid shape, that matched cell growth. HPLC analysis revealed three groups of peaks, possibly non-hydroxylated, mono- and di-hydroxylated carotenoids. Polar molecules were mainly represented. Journal of Industrial Microbiology & Biotechnology (2000) 24, 64–70. Received 19 April 1999/ Accepted in revised form 25 September 1999  相似文献   

8.
Bacillus atrophaeus’ spores are used in the preparation of bioindicators to monitor the dry heat, ethylene oxide, and plasma sterilization processes and in tests to assess sterilizing products. Earlier production methods involved culture in chemically defined medium to support sporulation with the disadvantage of requiring an extended period of time (14 days) besides high cost of substrates. The effect of cultivation conditions by solid-state fermentation (SSF) was investigated aiming at improving the cost–productivity relation. Initial SSF parameters such as the type of substrate were tested. Process optimization was carried out using factorial experimental designs and response surface methodology in which the influence of different variables—particle size, moisture content, incubation time, pH, inoculum size, calcium sources, and medium composition—was studied. The results have suggested that soybean molasses and sugarcane bagasse are potential substrate and support, respectively, contributing to a 5-day reduction in incubation time. Variables which presented significant effects and optimum values were mean particle size (1.0 mm), moisture content (93%), initial substrate pH (8.0), and water as a solution base. The high-yield spore production was about 3 logs higher than the control and no significant difference in dry heat resistance was observed.  相似文献   

9.
Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.  相似文献   

10.
The production of red pigments and citrinin by Monascus purpureus CCT3802 was investigated in submerged batch cultures performed in two phases: in the first phase, cells were grown on glucose, at pH 4.5, 5.5 or 6.5; after glucose depletion, pH was adjusted, when necessary, to 4.5, 5.5, 6.5, 7.0, 8.0 or 8.5, for a production phase. The highest total red pigments absorbance of 11.3 U was 16 times greater than the lowest absorbance and was achieved with growth at pH 5.5, followed by production at pH 8.5, which causes an immediate reduction of the intra cellular red pigments from 75% to 17% of the total absorbance. The lowest citrinin concentration, 5.5 mg L−1, was verified in the same culture while the highest concentration, 55 mg L−1, was verified in cultures entirely carried out at pH 5.5. An alkaline medium, besides promoting intra cellular red pigments excretion, strongly represses citrinin synthesis.  相似文献   

11.
GROWTEK bioreactor was used as modified solid-state fermentor to circumvent many of the problems associated with the conventional tray reactors for solid-state fermentation (SSF). Aspergillus oryzae IFO-30103 produced very high levels of α-amylase by modified solid-state fermentation (mSSF) compared to SSF carried out in enamel coated metallic trays utilizing wheat bran as substrate. High α-amylase yield of 15,833 U g−1 dry solid in mSSF were obtained when the fungus were cultivated at an initial pH of 6.0 at 32°C for 54 h whereas α-amylase production in SSF reached its maxima (12,899 U g−1 dry solid ) at 30°C after 66 h of incubation. With the supplementation of 1% NaNO3, the maximum activity obtained was 19,665 U g−1 dry solid (24% higher than control) in mSSF, whereas, in SSF maximum activity was 15,480 U g−1 dry solid in presence of 0.1% Triton X-100 (20% higher than the control).  相似文献   

12.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

13.
A phenanthrene-degrading Mycobacterium sp. strain 6PY1 was grown in an aqueous/organic biphasic culture system with phenanthrene as sole carbon source. Its capacity of degradation was studied during sequential inoculum enrichments, reaching complete phenanthrene degradation at a maximim rate of 7 mg l−1 h−1. Water–oil emulsions and biofilm formation were observed in biphasic cultures after four successive enrichments. The factors influencing interfacial area in the emulsions were: the initial phenanthrene concentration, the initial inoculum size, and the silicone oil volume fraction. The results showed that the interfacial area was mainly dependent on the silicone oil/mineral salts medium ratio and the inoculum size.  相似文献   

14.
Chemically pre-treated brewer’s spent grain was saccharified with cellulase producing a hydrolysate with approx. 50 g glucose l−1. This hydrolysate was used as a fermentation medium without any nutrient supplementation by Lactobacillus delbrueckii, which produced L-lactic acid (5.4 g l−1) at 0.73 g g−1 glucose consumed (73% efficiency). An inoculum of 1 g dry cells l−1 gave the best yield of the process, but the pH decrease affected the microorganism capacity to consume glucose and convert it into lactic acid.  相似文献   

15.
Gametophyte cells of brown algae Laminaria japonica were employed both in a modified silicone tubular membrane-aerated photobioreactor (bubble-less cultivation mode) and a bubble-column photobioreactor (bubbling cultivation mode), to study different gas–liquid mixing modes on cell growth rate and cell physiological status. With an inoculum density of 50 mg DCW l−1, in modified artificial Pacific seawater (APSW) medium at 13°C, light intensity of 60 μE m−2 s−1, light cycle of 16/8 h L/D, and aeration rate of 60 ml min−1, the specific growth rates were 0.082 d−1 for bubble-less mode and 0.070 d−1 for bubbling mode with biomass, in the form of dry cell density, increasing 10.9 and 6.8 times, respectively, during the 36 days’ photolithotrophic cultivation. The specific oxygen evolution rate under bubble-less mode was 39.6% higher than under bubbling mode on the 18th day. The gametophyte cells grew in cell aggregates with clump sizes, at day 36, of 1.5 mm and 0.5 mm diameter under bubble-less and bubbling mode respectively and cell injury percentages of 5.1% and 21.1%, respectively. The silicone tubular membrane-aerated photobioreactor was better suited for the cultivation of fragile macroalgal gametophyte cells due to the absence of hydrodynamic shear stress caused by fluid turbulence and the presence of a bubble-less gas supply.  相似文献   

16.
Poly(3-hydroxybutyrate) (PHB) synthesis was analyzed under microaerobic conditions in a recombinant Escherichia coli arcA mutant using glycerol as the main carbon source. The effect of several additives was assessed in a semi-synthetic medium by the ‘one-factor-at-a-time’ technique. Casein amino acids (CAS) concentration was an important factor influencing both growth and PHB accumulation. Three factors exerting a statistically significant influence on PHB synthesis were selected by using a Plackett–Burman screening design [glycerol, CAS, and initial cell dry weight (CDW) concentrations] and then optimized through a Box–Wilson design. Under such optimized conditions (22.02 g l−1 glycerol, 1.78 g l−1 CAS, and 1.83 g l−1 inoculum) microaerobic batch cultures gave rise to 8.37 g l−1 CDW and 3.52 g l−1 PHB in 48 h (PHB content of 42%) in a benchtop bioreactor. Further improvements in microaerobic PHB accumulation were obtained in fed-batch cultures, in which glycerol was added to maintain its concentration above 5 g l−1. After 60 h, CDW and PHB concentration reached 21.17 and 10.81 g l−1, respectively, which results in a PHB content of 51%. Microaerobic fed-batch cultures allowed a 2.57-fold increase in volumetric productivity when compared with batch cultures. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

17.
Cephamycin C is an extracellular broad spectrum β-lactam antibiotic produced by Streptomyces clavuligerus, S. cattleya and Nocardia lactamdurans. In the present study, different substrates for solid-state fermentation were screened for maximum cephamycin C production by S. clavuligerus NT4. The fermentation parameters such as substrate concentration, moisture content, potassium dihydrogen phosphate, inoculum size and ammonium oxalate were optimized by response surface methodology (RSM). The optimized conditions yielded 21.68 ± 0.76 mg gds−1 of cephamycin C as compared to 10.50 ± 1.04 mg gds−1 before optimization. Effect of various amino acids on cephamycin C production was further studied by using RSM, which resulted in increased yield of 27.41 ± 0.65 mg gds−1.  相似文献   

18.
Brief exposure of Beta vulgaris root cultures to acidic medium resulted in release of betalain pigments while the capability for regrowth and continued pigment accumulation was retained. A 10-min exposure to pH 2 followed by return to standard growth medium (pH 5.5, 1.1 mM PO4) resulted in release of 0.59 mg pigment/g dry weight over the subsequent 24-h period. The released pigment corresponds to 36.8% of the total pigments. Further improvement in culture productivity was achieved through phosphate limitation. Specific pigment productivity increased fivefold for cultures grown in phosphate-free medium as compared to cultures grown in control medium (1.1 mM PO4). A maximum total pigment production of 25.2 mg/l was observed at an initial medium phosphate level 0.3 mM. When combined with phosphate limitation, low pH facilitated the release of 3.03 mg pigment/g dry weight, which corresponds to 50% of the total pigment. The permeabilized roots were capable of regrowth and continued pigment accumulation. A cytochemical assay for respiratory activity revealed that the basis of regrowth was lateral root initials that were unaffected during the acidic pH treatment. Received: 16 December 1997 / Received revision: 7 May 1998 / Accepted: 16 May 1998  相似文献   

19.
This report describes the optimization of culture conditions for coenzyme Q10 (CoQ10) production by Agrobacterium tumefaciens KCCM 10413, an identified high-CoQ10-producing strain (Kim et al., Korean patent. 10-0458818, 2002b). Among the conditions tested, the pH and the dissolved oxygen (DO) levels were the key factors affecting CoQ10 production. When the pH and DO levels were controlled at 7.0 and 0–10%, respectively, a dry cell weight (DCW) of 48.4 g l−1 and a CoQ10 production of 320 mg l−1 were obtained after 96 h of batch culture, corresponding to a specific CoQ10 content of 6.61 mg g-DCW−1. In a fed-batch culture of sucrose, the DCW, specific CoQ10 content, and CoQ10 production increased to 53.6 g l−1, 8.54 mg g-DCW−1, and 458 mg l−1, respectively. CoQ10 production was scaled up from a laboratory scale (5-l fermentor) to a pilot scale (300 l) and a plant scale (5,000 l) using the impeller tip velocity (V tip) as a scale-up parameter. CoQ10 production at the laboratory scale was similar to those at the pilot and plant scales. This is the first report of pilot- and plant-scale productions of CoQ10 in A. tumefaciens.  相似文献   

20.
Batch cultivation of Ralstonia eutropha NRRL B14690 attained 21 g biomass l−1 and 9.4 g poly(β-hydroxybutyrate) l−1 (0.45 g PHB g−1 dry wt−1) in 60 h. Repeated batch operation (empty-and-fill protocol) to remove 20% (v/v) of the culture broth and to supplement an equal volume of fresh media resulted in 49 g biomass l−1 and 25 g PHB l−1 (0.51 g PHB g−1 dry wt−1) with an overall productivity of 0.42 g PHB l−1 h−1 in 67 h. In the two cycles of repeated batch fermentation there was a 3-fold increase in productivity as compared to batch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号