首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M A Whitt  L Chong    J K Rose 《Journal of virology》1989,63(9):3569-3578
We have used transient expression of the wild-type vesicular stomatitis virus (VSV) glycoprotein (G protein) from cloned cDNA to rescue a temperature-sensitive G protein mutant of VSV in cells at the nonpermissive temperature. Using cDNAs encoding G proteins with deletions in the normal 29-amino-acid cytoplasmic domain, we determined that the presence of either the membrane-proximal 9 amino acids or the membrane-distal 12 amino acids was sufficient for rescue of the temperature-sensitive mutant. G proteins with cytoplasmic domains derived from other cellular or viral G proteins did not rescue the mutant, nor did G proteins with one or three amino acids of the normal cytoplasmic domain. Rescue correlated directly with the ability of the G proteins to be incorporated into virus particles. This was shown by analysis of radiolabeled particles separated on sucrose gradients as well as by electron microscopy of rescued virus after immunogold labeling. Quantitation of surface expression showed that all of the mutated G proteins were expressed less efficiently on the cell surface than was wild-type G protein. However, we were able to correct for differences in rescue efficiency resulting from differences in the level of surface expression by reducing wild-type G protein expression to levels equivalent to those observed for the mutated G proteins. Our results provide evidence that at least a portion of the cytoplasmic domain is required for efficient assembly of the VSV G protein into virions during virus budding.  相似文献   

2.
Oligonucleotide-directed mutagenesis was used to construct chimeric cDNAs that encode the extracellular and transmembrane domains of the vesicular stomatitis virus glycoprotein (G) linked to the cytoplasmic domain of either the immunoglobulin mu membrane heavy chain, the hemagglutinin glycoprotein of influenza virus, or the small glycoprotein (p23) of infectious bronchitis virus. Biochemical analyses and immunofluorescence microscopy demonstrated that these hybrid genes were correctly expressed in eukaryotic cells and that the hybrid proteins were transported to the plasma membrane. The rate of transport to the Golgi complex of G protein with an immunoglobulin mu membrane cytoplasmic domain was approximately sixfold slower than G protein with its normal cytoplasmic domain. However, this rate was virtually identical to the rate of transport of micron heavy chain molecules measured in the B cell line WEHI 231. The rate of transport of G protein with a hemagglutinin cytoplasmic domain was threefold slower than wild type G protein and G protein with a p23 cytoplasmic domain, which were transported at similar rates. The combined results underscore the importance of the amino acid sequence in the cytoplasmic domain for efficient transport of G protein to the cell surface. Also, normal cytoplasmic domains from other transmembrane glycoproteins can substitute for the G protein cytoplasmic domain in transport of G protein to the plasma membrane. The method of constructing precise hybrid proteins described here will be useful in defining functions of specific domains of viral and cellular integral membrane proteins.  相似文献   

3.
Recently we showed that the membrane-proximal stem region of the vesicular stomatitis virus (VSV) G protein ectodomain (G stem [GS]), together with the transmembrane and cytoplasmic domains, was sufficient to mediate efficient VSV budding (C. S. Robison and M. A. Whitt, J. Virol. 74:2239-2246, 2000). Here, we show that GS can also potentiate the membrane fusion activity of heterologous viral fusion proteins when GS is coexpressed with those proteins. For some fusion proteins, there was as much as a 40-fold increase in syncytium formation when GS was coexpressed compared to that seen when the fusion protein was expressed alone. Fusion potentiation by GS was not protein specific, since it occurred with both pH-dependent as well as pH-independent fusion proteins. Using a recombinant vesicular stomatitis virus encoding GS that contained an N-terminal hemagglutinin (HA) tag (GS(HA) virus), we found that the GS(HA) virus bound to cells as well as the wild-type virus did at pH 7.0; however, the GS(HA) virus was noninfectious. Analysis of cells expressing GS(HA) in a three-color membrane fusion assay revealed that GS(HA) could induce lipid mixing but not cytoplasmic mixing, indicating that GS can induce hemifusion. Treatment of GS(HA) virus-bound cells with the membrane-destabilizing drug chlorpromazine rescued the hemifusion block and allowed entry and subsequent replication of GS(HA) virus, demonstrating that GS-mediated hemifusion was a functional intermediate in the membrane fusion pathway. Using a series of truncation mutants, we also determined that only 14 residues of GS, together with the VSV G transmembrane and cytoplasmic tail, were sufficient for fusion potentiation. To our knowledge, this is the first report which shows that a small domain of one viral glycoprotein can promote the fusion activity of other, unrelated viral glycoproteins.  相似文献   

4.
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly.  相似文献   

5.
In this report, we show that the glycoprotein of vesicular stomatitis virus (VSV G) contains within its extracellular membrane-proximal stem (GS) a domain that is required for efficient VSV budding. To determine a minimal sequence in GS that provides for high-level virus assembly, we have generated a series of recombinant DeltaG-VSVs which express chimeric glycoproteins having truncated stem sequences. The recombinant viruses having chimeras with 12 or more membrane-proximal residues of the G stem, and including the G protein transmembrane-cytoplasmic tail domains, produced near-wild-type levels of particles. In contrast, viruses encoding chimeras with shorter or no G-stem sequences produced approximately 10- to 20-fold less. This budding domain when present in chimeric glycoproteins also promoted their incorporation into the VSV envelope. We suggest that the G-stem budding domain promotes virus release by inducing membrane curvature at sites where virus budding occurs or by recruiting condensed nucleocapsids to sites on the plasma membrane which are competent for efficient virus budding.  相似文献   

6.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5°C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

7.
The influenza virus A/Japan/305/57 hemagglutinin (HA) can be converted from a protein that is essentially excluded from coated pits into one that is internalized at approximately the rate of uptake of bulk membrane by replacing the HA transmembrane and cytoplasmic sequences with those of either of two other glycoproteins (Roth et al., 1986. J. Cell Biol. 102:1271-1283). To identify more precisely the foreign amino acid sequences responsible for this change in HA traffic, DNA sequences encoding the transmembrane (TM) or cytoplasmic (CD) domains of either the G glycoprotein of vesicular stomatitis virus (VSV) or the gC glycoprotein of herpes simplex virus were exchanged for those encoding the analogous regions of wild type HA (HA wt). HA-HA-G and HA-HA-gC, chimeras that contain only a foreign CD, resembled HA wt in having a long residence on the cell surface and were internalized very slowly. HA-HA-gC was indistinguishable from HA in our assays, whereas twice as much HA-HA-G was internalized as was HA wt. However, HA-G-HA, containing only a foreign TM, was internalized as efficiently as was HA- G-G, a chimeric protein with transmembrane and cytoplasmic sequences of VSV G protein. Conditions that blocked internalization through coated pits also inhibited endocytosis of the chimeric proteins. Although the external domains of the chimeras were less well folded than that of the wild type HA, denaturation of the wild type HA external domain by treatment with low pH did not increase the interaction of HA with coated pits. However, mutation of four amino acids in the TM of HA allowed the protein to be internalized, indicating that the property that allows HA to escape endocytosis resides in its TM. These results indicate that possession of a cytoplasmic recognition feature is not required for the internalization of all cell surface proteins and suggest that multiple mechanisms for internalization exist that operate at distinctly different rates.  相似文献   

8.
B A Brody  S S Rhee    E Hunter 《Journal of virology》1994,68(7):4620-4627
Viral protease-mediated cleavage within the cytoplasmic domain of the transmembrane (TM) glycoprotein of the type D retrovirus, Mason-Pfizer monkey virus, removes approximately 16 amino acids from the carboxy terminus of the protein. To determine the functional significance of this cleavage in the virus life cycle, we introduced premature stop codons into the TM coding domain, resulting in the production of truncated glycoproteins. Progressive truncated of the cytoplasmic domain identified the carboxy-terminal third as being required for efficient incorporation of the glycoprotein complex into budding virions and profoundly increased the fusogenic capability of the TM glycoprotein. These results, together with the ability of matrix protein mutations to suppress TM cleavage, imply that this portion of the glycoprotein interacts specifically with the capsid proteins during budding, suppressing glycoprotein fusion function until virus maturation has occurred.  相似文献   

9.
Previous studies have shown that the glycoprotein cytoplasmic domains of human immunodeficiency virus type 2 (HIV-2) or simian immunodeficiency virus of macaques modulate biological activities of the viral glycoprotein complex, including syncytium formation, exterior glycoprotein conformation, and glycoprotein incorporation into budding virus particles. We have now utilized a recombinant expression system to study interactions of full-length or truncated HIV-2 glycoproteins with coexpressed HIV-2 Gag proteins which self-assemble and bud as virus-like particles. Interestingly, budding of HIV-2 virus-like particles from cells was enhanced 5- to 24-fold when Gag was coexpressed with the full-length HIV-2 glycoprotein, compared with Gag expressed either alone or with a truncated HIV-2 glycoprotein. The results obtained in this model system indicate that an additional effect of the lengthy cytoplasmic domain of the glycoprotein of HIV-2 is enhancement of particle budding. We speculate that the cytoplasmic domain of the viral glycoprotein of HIV-2 enhances budding by (i) potentiation of Gag structure or function or (ii) membrane modulation.  相似文献   

10.
Members of the Bunyaviridae family mature by a budding process in the Golgi complex. The site of maturation is thought to be largely determined by the accumulation of the two spike glycoproteins, G1 and G2, in this organelle. Here we show that the signal for localizing the Uukuniemi virus (a phlebovirus) spike protein complex to the Golgi complex resides in the cytoplasmic tail of G1. We constructed chimeric proteins in which the ectodomain, transmembrane domain (TMD), and cytoplasmic tail (CT) of Uukuniemi virus G1 were exchanged with the corresponding domains of either vesicular stomatitis virus G protein (VSV G), chicken lysozyme, or CD4, all proteins readily transported to the plasma membrane. The chimeras were expressed in HeLa or BHK-21 cells by using either the T7 RNA polymerase-driven vaccinia virus system or the Semliki Forest virus system. The fate of the chimeric proteins was monitored by indirect immunofluorescence, and their localizations were compared by double labeling with markers specific for the Golgi complex. The results showed that the ectodomain and TMD (including the 10 flanking residues on either side of the membrane) of G1 played no apparent role in targeting chimeric proteins to the Golgi complex. Instead, all chimeras containing the CT of G1 were efficiently targeted to the Golgi complex and colocalized with mannosidase II, a Golgi-specific enzyme. Conversely, replacing the CT of G1 with that from VSV G resulted in the efficient transport of the chimeric protein to the cell surface. Progressive deletions of the G1 tail suggested that the Golgi retention signal maps to a region encompassing approximately residues 10 to 50, counting from the proposed border between the TMD and the tail. Both G1 and G2 were found to be acylated, as shown by incorporation of [3H]palmitate into the viral proteins. By mutational analyses of CD4-G1 chimeras, the sites for palmitylation were mapped to two closely spaced cysteine residues in the G1 tail. Changing either or both of these cysteines to alanine had no effect on the targeting of the chimeric protein to the Golgi complex.  相似文献   

11.
Rubella virus is a small enveloped positive-strand RNA virus that assembles on intracellular membranes in a variety of cell types. The virus structural proteins contain all of the information necessary to mediate the assembly of virus-like particles in the Golgi complex. We have recently identified intracellular retention signals within the two viral envelope glycoproteins. E2 contains a Golgi retention signal in its transmembrane domain, whereas a signal for retention in the endoplasmic reticulum has been localized to the transmembrane and cytoplasmic domains of E1 (T. C. Hobman, L. Woodward, and M. G. Farquhar, Mol. Biol. Cell 6:7-20, 1995; T. C. Hobman, H. F. Lemon, and K. Jewell, J. Virol. 71:7670-7680, 1997). In the present study, we have analyzed the role of these retention signals in the assembly of rubella virus-like particles. Deletion or replacement of these domains with analogous regions from other type I membrane glycoproteins resulted in failure of rubella virus-like particles to be secreted from transfected cells. The E1 transmembrane and cytoplasmic domains were not required for targeting of the structural proteins to the Golgi complex and, surprisingly, assembly and budding of virus particles into the lumen of this organelle; however, the resultant particles were not secreted. In contrast, replacement or alteration of the E2 transmembrane or cytoplasmic domain, respectively, abrogated the targeting of the structural proteins to the budding site, and consequently, no virion formation was observed. These results indicate that the transmembrane and cytoplasmic domains of E2 and E1 are required for early and late steps respectively in the viral assembly pathway and that rubella virus morphogenesis is very different from that of the structurally similar alphaviruses.  相似文献   

12.
We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein was deleted and replaced by one or both of the E1G and E2G genes, together with a green fluorescent protein gene. These DeltaG viruses incorporated E1G and E2G proteins at levels approximately equivalent to the normal level of VSV G itself, or about 1,200 molecules of each protein per virion. Given the potency of VSV recombinants as vaccines in other studies, this high-level expression and incorporation of HCV proteins into virions could be very important for development of an HCV vaccine. Despite the presence of E1G and E2G proteins at high levels in the virions, these virions did not infect cell lines that have been reported to support at least a low level of HCV infection and replication.  相似文献   

13.
L G Perez  G L Davis    E Hunter 《Journal of virology》1987,61(10):2981-2988
The envelope glycoprotein complex of Rous sarcoma virus consists of a knoblike, receptor-binding gp85 polypeptide that is linked through disulfide bonds to a membrane-spanning gp37 spike. We used oligonucleotide-directed mutagenesis to assess the role of the hydrophobic transmembrane region and hydrophilic cytoplasmic domain of gp37 in intracellular transport and assembly into virions. Early termination codons were introduced on either side of the hydrophobic transmembrane region, and the mutated env genes were expressed from the late promoter of simian virus 40. This resulted in the synthesis of glycoprotein complexes composed of a normal gp85 and a truncated gp37 molecule that lacked the cytoplasmic domain alone or both the cytoplasmic and transmembrane domains. The biosynthesis and intracellular transport of the truncated proteins were not significantly different from those of the wild-type glycoproteins, suggesting that any protein signals for biosynthesis and intracellular transport of this viral glycoprotein complex must reside in its extracellular domain. The glycoprotein complex lacking the cytoplasmic domain of gp37 is stably expressed on the cell surface in a manner similar to that of the wild type. In contrast, the complex lacking both the transmembrane and cytoplasmic domains is secreted as a soluble molecule into the media. It can be concluded, therefore, that the transmembrane domain alone is essential for anchoring the RSV env complex in the cell membrane and that the cytoplasmic domain is not required for anchor function. Insertion of the mutated genes into an infectious proviral genome allowed us to assess the ability of the truncated gene products to be assembled into virions and to determine whether such virions were infectious. Viral genomes encoding the secreted glycoprotein were noninfectious, whereas those encoding a glycoprotein complex lacking only the cytoplasmic domain of gp37 were infectious. Virions produced from these mutant-infected cells contained normal levels of glycoprotein. The cytoplasmic tail of gp37 is thus not required for the assembly of envelope glycoproteins into virions. It is unlikely, therefore, that this region of gp37 interacts with viral core proteins during the selective incorporation of viral glycoproteins into the viral envelope.  相似文献   

14.
The vesicular stomatitis virus glycoprotein (VSV G) is a model transmembrane glycoprotein that has been extensively used to study the exocytotic pathway. The cytoplasmic domain of VSV G contains information for several intracellular sorting steps including efficient export from the ER, basolateral delivery, and endocytosis. In order to identify proteins that potentially interact with the polypeptide sorting motifs in the VSV G tail, the carboxy-terminal 27 amino acids of VSV G were used as bait in a yeast two-hybrid system. The protein identified most frequently in the screen is a novel protein of 38 kDa, p38. In the present work, the initial molecular and biochemical characterization of p38 is described. Preliminary evidence suggests that p38 may interact transiently with endoplasmic reticulum (ER) membranes, and thus may affect VSV G and other cargo movement at the step of ER to Golgi traffic.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) can readily accept envelope (Env) glycoproteins from distantly related retroviruses. However, we previously showed that the HIV-1 Env glycoprotein complex is excluded even from particles formed by the Gag proteins of another lentivirus, visna virus, unless the matrix domain of the visna virus Gag polyprotein is replaced by that of HIV-1. We also showed that the integrity of the HIV-1 matrix domain is critical for the incorporation of wild-type HIV-1 Env protein but not for the incorporation of a truncated form which lacks the 144 C-terminal amino acids of the cytoplasmic domain of the transmembrane glycoprotein. We report here that the C-terminal truncation of the transmembrane glycoprotein also allows the efficient incorporation of HIV-1 Env proteins into viral particles formed by the Gag proteins of the widely divergent Moloney murine leukemia virus (Mo-MLV). Additionally, pseudotyping of a Mo-MLV-based vector with the truncated rather than the full-length HIV-1 Env allowed efficient transduction of human CD4+ cells. These results establish that Mo-MLV-based vectors can be used to target cells susceptible to infection by HIV-1.  相似文献   

16.
Rubella virus (RV) envelope glycoproteins, E2 and E1, form a heterodimeric complex that is targeted to medial/trans-Golgi cisternae. To identify the Golgi targeting signal(s) for the E2/E1 spike complex, we constructed chimeric proteins consisting of domains from RV glycoproteins and vesicular stomatitis virus (VSV) G protein. The location of the chimeric proteins in stably transfected Chinese hamster ovary cells was determined by immunofluorescence, immunoelectron microscopy, and by the extent of processing of their N-linked glycans. A trans-dominant Golgi retention signal was identified within the C-terminal region of E2. When the transmembrane (TM) and cytoplasmic (CT) domains of VSV G were replaced with those of RV E2, the hybrid protein (G-E2TMCT+) was retained in the Golgi. Transport of G-E2TMCT+ to the Golgi was rapid (t1/2 = 10-20 min). The G-E2TMCT+ protein was determined to be distal to or within the medial Golgi based on acquisition of endo H resistance but proximal to the trans-Golgi network since it lacked sialic acid. Deletion analysis revealed that only the TM domain of E2 was required for Golgi targeting. Although the cytoplasmic domain of E2 was not necessary for Golgi retention, it was required for efficient transport of VSV G-RV chimeras out of the endoplasmic reticulum. When assayed in sucrose velocity sedimentations gradients, the Golgi-retained G-E2TMCT+ protein behaved as a dimer. Unlike virtually all other Golgi targeting signals, the E2 TM domain does not contain any polar amino acids. The TM and CT domains of E1 were not required for targeting of E2 and E1 to the Golgi indicating that a heterodimer of two integral membrane proteins can be retained in the Golgi by a single retention signal.  相似文献   

17.
Fluorescence photobleaching recovery (FPR) measurements of virus glycoproteins on the surfaces of cells infected with vesicular stomatitis virus (VSV) and Sindbis virus showed that the VSV glycoprotein (G) remained mobile throughout the infectious cycle, whereas Sindbis virus glycoproteins (E1, E2) were partially mobile early after infection and immobile at later times when greater amounts of these proteins were on the cell surface. A highly mobile fraction of Sindbis virus glycoproteins was detected throughout the replication cycle of a temperature-sensitive mutant unable to form virus particles. Thus immobilization of E1 and E2 was the result of increasing surface glycoprotein concentrations and virus budding. Together with other data, which included the detection of E1 and E2 in particles as soon as these proteins were transported to the cell surface, the FPR results suggest that Sindbis virus assembly initiates on intracellular vesicles, where glycoproteins aggregate and bind nucleocapsids. In contrast, our FPR data on VSV support a model previously suggested by others, in which a small fraction of cell-surface G is immobilized into budding sites formed by interactions with virus matrix and nucleoproteins. FPR measurements also provide direct evidence for strong interactions between E1 and E2, as well as between E1 and PE2, the precursor form of E2.  相似文献   

18.
Assembly of an infectious retrovirus requires the incorporation of the envelope glycoprotein complex during the process of particle budding. We have recently demonstrated that amino acid substitutions of a tyrosine residue in the cytoplasmic domain block glycoprotein incorporation into budding Mason-Pfizer monkey virus (M-PMV) particles and abrogate infectivity (C. Song, S. R. Dubay, and E. Hunter, J. Virol. 77:5192-5200, 2003). To investigate the contribution of other amino acids in the cytoplasmic domain to the process of glycoprotein incorporation, we introduced alanine-scanning mutations into this region of the transmembrane protein. The effects of the mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of two cytoplasmic residues, valine 20 and histidine 21, inhibits viral protease-mediated cleavage of the cytoplasmic domain that is observed during virion maturation, but the mutant virions show only moderately reduced infectivity. We also demonstrate that the cytoplasmic domain of the M-PMV contains three amino acid residues that are absolutely essential for incorporation of glycoprotein into virions. In addition to the previously identified tyrosine at residue 22, an isoleucine at position 18 and a leucine at position 25 each mediate the process of incorporation and efficient release of virions. While isoleucine 18 may be involved in direct interactions with immature capsids, antibody uptake studies showed that leucine 25 and tyrosine 22 are part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein. These results demonstrate that the cytoplasmic domain of M-PMV Env, in part through its YXXL-mediated endocytosis and intracellular trafficking signals, plays a critical role in the incorporation of glycoprotein into virions.  相似文献   

19.
Nucleorhabdoviruses such as Sonchus yellow net virus (SYNV) replicate in the nuclei and undergo morphogenesis at the inner nuclear membrane (IM) in plant cells. Mature particles are presumed to form by budding of the Matrix (M) protein‐nucleocapsid complexes through host IMs to acquire host phospholipids and the surface glycoproteins (G). To address mechanisms underlying nucleorhabdovirus budding, we generated recombinant SYNV G mutants containing a truncated amino‐terminal (NT) or carboxyl‐terminal (CT) domain. Electron microscopy and sucrose gradient centrifugation analyses showed that the CT domain is essential for virion morphogenesis whereas the NT domain is also required for efficient budding. SYNV infection induces IM invaginations that are thought to provide membrane sites for virus budding. We found that in the context of viral infections, interactions of the M protein with the CT domain of the membrane‐anchored G protein mediate M protein translocation and IM invagination. Interestingly, tethering the M protein to endomembranes, either by co‐expression with a transmembrane G protein CT domain or by artificial fusion with the G protein membrane targeting sequence, induces IM invagination in uninfected cells. Further evidence to support functions of G‐M interactions in virus budding came from dominant negative effects on SYNV‐induced IM invagination and viral infections that were elicited by expression of a soluble version of the G protein CT domain. Based on these data, we propose that cooperative G‐M interactions promote efficient SYNV budding.  相似文献   

20.
The N terminus of the matrix (M) protein of vesicular stomatitis virus (VSV) and of other rhabdoviruses contains a highly conserved PPPY sequence (or PY motif) similar to the late (L) domains in the Gag proteins of some retroviruses. These L domains in retroviral Gag proteins are required for efficient release of virus particles. In this report, we show that mutations in the PPPY sequence of the VSV M protein reduce virus yield by blocking a late stage in virus budding. We also observed a delay in the ability of mutant viruses to cause inhibition of host gene expression compared to wild-type (WT) VSV. The effect of PY mutations on virus budding appears to be due to a block at a stage just prior to virion release, since electron microscopic examination of PPPA mutant-infected cells showed a large number of assembled virions at the plasma membrane trapped in the process of budding. Deletion of the glycoprotein (G) in addition to these mutations further reduced the virus yield to less than 1% of WT levels, and very few particles were assembled at the cell surface. This observation suggested that G protein aids in the initial stage of budding, presumably during the formation of the bud site. Overall, our results confirm that the PPPY sequence of the VSV M protein possesses L domain activity analogous to that of the retroviral Gag proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号