首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.  相似文献   

2.
Subunit h, a 92-residue-long, hydrophilic, acidic protein, is a component of the yeast mitochondrial F1Fo ATP synthase. This subunit, homologous to the mammalian factor F6, is essential for the correct assembly and/or functioning of this enzyme since yeast cells lacking it are not able to grow on nonfermentable carbon sources. Chemical cross-links between subunit h and subunit 4 have previously been shown, suggesting that subunit h is a component of the peripheral stalk of the F1Fo ATP synthase. The construction of cysteine-containing subunit h mutants and the use of bismaleimide reagents provided insights into its environment. Cross-links were obtained between subunit h and subunits alpha, f, d, and 4. These results and secondary structure predictions allowed us to build a structural model and to propose that this subunit occupies a central place in the peripheral stalk between the F1 sector and the membrane. In addition, subunit h was found to have a stoichiometry of one in the F1Fo ATP synthase complex and to be in close proximity to another subunit h belonging to another F1Fo ATP synthase in the inner mitochondrial membrane. Finally, functional characterization of mitochondria from mutants expressing different C-terminal shortened subunit h suggested that its C-terminal part is not essential for the assembly of a functional F1Fo ATP synthase.  相似文献   

3.
The F(0)F(1)-ATPase complex of yeast mitochondria contains three mitochondrial and at least 17 nuclear gene products. The coordinate assembly of mitochondrial and cytosolic translation products relies on chaperones and specific factors that stabilize the pools of some unassembled subunits. Atp10p was identified as a mitochondrial inner membrane component necessary for the biogenesis of the hydrophobic F(0) sector of the ATPase. Here we show that, following its synthesis on mitochondrial ribosomes, subunit 6 of the ATPase (Atp6p) can be cross-linked to Atp10p. This interaction is required for the integration of Atp6p into a partially assembled subcomplex of the ATPase. Pulse labeling and chase of mitochondrial translation products in vivo indicate that Atp6p is less stable and more rapidly degraded in an atp10 null mutant than in wild type. Based on these observations, we propose Atp10p to be an Atp6p-specific chaperone that facilitates the incorporation of Atp6p into an intermediate subcomplex of ATPase subunits.  相似文献   

4.
We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F(0). Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure.  相似文献   

5.
Atp11p and Atp12p are chaperones for F(1)-ATPase biogenesis in mitochondria   总被引:3,自引:0,他引:3  
The bioenergetic needs of aerobic cells are met principally through the action of the F(1)F(0) ATP synthase, which catalyzes ATP synthesis during oxidative phosphorylation. The catalytic unit of the enzyme (F(1)) is a multimeric protein of the subunit composition alpha(3)beta(3)(gamma)(delta) epsilon. Our work, which employs the yeast Saccharomyces cerevisiae as a model system for studies of mitochondrial function, has provided evidence that assembly of the mitochondrial alpha and beta subunits into the F(1) oligomer requires two molecular chaperone proteins called Atp11p and Atp12p. Comprehensive knowledge of Atp11p and Atp12p activities in mitochondria bears relevance to human physiology and disease as these chaperone actions are now known to exist in mitochondria of human cells.  相似文献   

6.
Atp6p is an essential subunit of the ATP synthase proton translocating domain, which is encoded by the mitochondrial DNA (mtDNA) in yeast. We have replaced the coding sequence of Atp6p gene with the non-respiratory genetic marker ARG8m. Due to the presence of ARG8m, accumulation of rho-/rho0 petites issued from large deletions in mtDNA could be restricted to 20-30% by growing the atp6 mutant in media lacking arginine. This moderate mtDNA instability created favorable conditions to investigate the consequences of a specific lack in Atp6p. Interestingly, in addition to the expected loss of ATP synthase activity, the cytochrome c oxidase respiratory enzyme steady-state level was found to be extremely low (<5%) in the atp6 mutant. We show that the cytochrome c oxidase-poor accumulation was caused by a failure in the synthesis of one of its mtDNA-encoded subunits, Cox1p, indicating that, in yeast mitochondria, Cox1p synthesis is a key target for cytochrome c oxidase abundance regulation in relation to the ATP synthase activity. We provide direct evidence showing that in the absence of Atp6p the remaining subunits of the ATP synthase can still assemble. Mitochondrial cristae were detected in the atp6 mutant, showing that neither Atp6p nor the ATP synthase activity is critical for their formation. However, the atp6 mutant exhibited unusual mitochondrial structure and distribution anomalies, presumably caused by a strong delay in inner membrane fusion.  相似文献   

7.
Two hydrophobic proteins have been purified to homogeneity from a mixture of about 13 proteins that are extracted from bovine mitochondria with a chloroform:methanol mixture. Sequence analysis shows that the smaller is a protein of 66 amino acids and is the product of a mitochondrial gene, A6L. The larger, a protein of 226 amino acids, is ATPase-6, a membrane component of ATP synthase, also encoded in mitochondrial DNA. The protein sequences determined establish that the genes for the two proteins overlap by 40 bases and indicate that translation of the second gene, ATPase-6, is initiated within the coding region of A6L. The A6L and the ATPase-6 proteins have also been isolated from the ATP synthase complex and so appear to be bona fide components of the enzyme. The function of A6L is unknown. However, weak structural homology suggests a functional similarity to the yeast mitochondrial protein, aapI, which is required for assembly of the fungal ATP synthase complex. Homologies between ATPase-6 and subunit a of the Escherichia coli ATP synthase complex indicate that the ATPase-6 protein has a similar role in the mitochondrial complex to its bacterial counterpart, being essential for the formation of an active proton channel.  相似文献   

8.
9.
Atp6p (subunit 6) of the Saccharomyces cerevisiae mitochondrial ATPase is synthesized with an N-terminal 10-amino acid presequence that is cleaved during assembly of the complex. This study has examined the role of the Atp6p presequence in the function and assembly of the ATPase complex. Two mutants were constructed in which the codons for amino acids 2-9 or 2-10 of the Atp6p precursor were deleted from the mitochondrial ATP6 gene. The concentration of Atp6p and ATPase complex was approximately 2 times less in the mutants. The lower concentration of ATPase complex in the leaderless mutants correlated with less Atp6p complexed with the Atp9p ring of the F0 sector and with accumulation of an Atp6p-Atp8p complex that aggregated into polymers destined for eventual proteolytic elimination. We propose that the presequence either targets Atp6p to the Atp9p or signals insertion of the Atp6p precursor into a microcompartment of the membrane for more efficient interaction with the Atp9p ring. Despite the ATPase deficiency, growth of the leaderless atp6 mutants on respiratory substrates and the efficiency of oxidative phosphorylation were similar to that of wild type, indicating that the mutations did not affect the proton permeability of mitochondria.  相似文献   

10.
Within the mitochondrial F(1)F(0)-ATP synthase, the nucleus-encoded delta-F(1) subunit plays a critical role in coupling the enzyme proton translocating and ATP synthesis activities. In Saccharomyces cerevisiae, deletion of the delta subunit gene (Deltadelta) was shown to result in a massive destabilization of the mitochondrial genome (mitochondrial DNA; mtDNA) in the form of 100% rho(-)/rho degrees petites (i.e. cells missing a large portion (>50%) of the mtDNA (rho(-)) or totally devoid of mtDNA (rho degrees )). Previous work has suggested that the absence of complete mtDNA (rho(+)) in Deltadelta yeast is a consequence of an uncoupling of the ATP synthase in the form of a passive proton transport through the enzyme (i.e. not coupled to ATP synthesis). However, it was unclear why or how this ATP synthase defect destabilized the mtDNA. We investigated this question using a nonrespiratory gene (ARG8(m)) inserted into the mtDNA. We first show that retention of functional mtDNA is lethal to Deltadelta yeast. We further show that combined with a nuclear mutation (Deltaatp4) preventing the ATP synthase proton channel assembly, a lack of delta subunit fails to destabilize the mtDNA, and rho(+) Deltadelta cells become viable. We conclude that Deltadelta yeast cannot survive when it has the ability to synthesize the ATP synthase proton channel. Accordingly, the rho(-)/rho degrees mutation can be viewed as a rescuing event, because this mutation prevents the synthesis of the two mtDNA-encoded subunits (Atp6p and Atp9p) forming the core of this channel. This is the first report of what we have called a "petite obligate" mutant of S. cerevisiae.  相似文献   

11.
The N-terminal portion of the mitochondrial b-subunit is anchored in the inner mitochondrial membrane by two hydrophobic segments. We investigated the role of the first membrane-spanning segment, which is absent in prokaryotic and chloroplastic enzymes. In the absence of the first membrane-spanning segment of the yeast subunit (subunit 4), a strong decrease in the amount of subunit g was found. The mutant ATP synthase did not dimerize or oligomerize, and mutant cells displayed anomalous mitochondrial morphologies with onion-like structures. This phenotype is similar to that of the null mutant in the ATP20 gene that encodes subunit g, a component involved in the dimerization/oligomerization of ATP synthase. Our data indicate that the first membrane-spanning segment of the mitochondrial b-subunit is not essential for the function of the enzyme since its removal did not directly alter the oxidative phosphorylation. It is proposed that the unique membrane-spanning segment of subunit g and the first membrane-spanning segment of subunit 4 interact, as shown by cross-linking experiments. We hypothesize that in eukaryotic cells the b-subunit has evolved to accommodate the interaction with the g-subunit, an associated ATP synthase component only present in the mitochondrial enzyme.  相似文献   

12.
Cross-linking experiments showed that the supernumerary subunit i is close to the interface between two ATP synthases. These data were used to demonstrate the presence of ATP synthase dimers in the inner mitochondrial membrane of Saccharomyces cerevisiae. A cysteine residue was introduced into the inter-membrane space located C-terminal part of subunit i. Cross-linking experiments revealed a dimerization of subunit i. This cross-linking occurred only with the dimeric form of the enzyme after incubating intact mitochondria with a bis-maleimide reagent, thus indicating an inter-ATP synthase cross-linking, whereas the monomeric form of the enzyme exhibited only an intra-ATP synthase cross-linking with subunit 6, another component of the membranous domain of the ATP synthase.  相似文献   

13.
Marie Lapaille  Emilie Perez  Claire Remacle 《BBA》2010,1797(8):1533-1539
Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit β, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of β subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.  相似文献   

14.
The Atp9p ring is one of several assembly modules of yeast mitochondrial ATP synthase. The ring, composed of 10 copies of Atp9p, is part of the rotor that couples proton translocation to synthesis or hydrolysis of ATP. We present evidence that before its assembly with other ATP synthase modules, most of Atp9p is present in at least three complexes with masses of 200–400 kDa that co-immunopurify with Cox6p. Pulse-labeling analysis disclosed a time-dependent reduction of radiolabeled Atp9p in the complexes and an increase of Atp9p in the ring form of wild type yeast and of mss51, pet111, and pet494 mutants lacking Cox1p, Cox2p, and Cox3p, respectively. Ring formation was not significantly different from wild type in an mss51 or atp10 mutant. The atp10 mutation blocks the interaction of the Atp9p ring with other modules of the ATP synthase. In contrast, ring formation was reduced in a cox6 mutant, consistent with a role of Cox6p in oligomerization of Atp9p. Cox6p involvement in ATP synthase assembly is also supported by studies showing that ring formation in cells adapting from fermentative to aerobic growth was less efficient in mitochondria of the cox6 mutant than the parental respiratory-competent strain or a cox4 mutant. We speculate that the constitutive and Cox6p-independent rate of Atp9p oligomerization may be sufficient to produce the level of ATP synthase needed for maintaining a membrane potential but limiting for optimal oxidative phosphorylation.  相似文献   

15.
The oxidative phosphorylation process is dependent on the assembly of both the respiratory chain that generates the electrochemical potential of the mitochondrial inner membrane and the ATP synthase complex which uses this membrane potential to drive ATP synthesis. The five respiratory enzymes involved in this process, complexes I to V, are composed of multiple subunits, some of which are synthesized on mitochondrial ribosomes, whereas others are a product of the nucleocytoplasmic genetic system. The mitochondrial genome has a limited coding capacity and the co-ordinate expression of all the subunits forming these complexes has been shown to be under nuclear control. Present knowledge of complexes I to V mainly comes from studies of bovine and fungal mitochondria. If beef heart mitochondria represent a choice material for studying the composition and structure of these complexes, Saccharomyces cerevisiae and Neurospora crassa and their numerous respiratory mutants, are ideal organisms for investigating the co-ordination of nuclear and mitochondrial genomes in their assembly. The major reason for the interest in respiratory complexes and ATP synthase from the mitochondrial inner membrane in Homo sapiens and in higher plants is the relationship between enzyme deficiencies and human diseases and ageing on one hand, and such plant phenotypic abnormalities as cytoplasmic male sterility on the other.  相似文献   

16.
It is now clearly established that dimerization of the F(1)F(o) ATP synthase takes place in the mitochondrial inner membrane. Interestingly, oligomerization of this enzyme seems to be involved in cristae morphogenesis. As they were able to form homodimers, subunits 4, e, and g have been proposed as potential ATP synthase dimerization subunits. In this paper, we provide evidence that subunit h, a peripheral stalk component, is located either at or near the ATP synthase dimerization interface. Subunit h homodimers were formed in mitochondria and were found to be associated to ATP synthase dimers. Moreover, homodimerization of subunit h and of subunit i turned out to be independent of subunits e and g, confirming the existence of an ATP synthase dimer in the mitochondrial inner membrane in the absence of subunits e and g. For the first time, this dimer has been observed by BN-PAGE. Finally, from these results we are now able to update our model for the supramolecular organization of the ATP synthase in the membrane and propose a role for subunits e and g, which stabilize the ATP synthase dimers and are involved in the oligomerization of the complex.  相似文献   

17.
The generation of cellular energy depends on the coordinated assembly of nuclear and mitochondrial-encoded proteins into multisubunit respiratory chain complexes in the inner membrane of mitochondria. Here, we describe the identification of a conserved metallopeptidase present in the intermembrane space, termed Atp23, which exerts dual activities during the biogenesis of the F(1)F(O)-ATP synthase. On one hand, Atp23 serves as a processing peptidase and mediates the maturation of the mitochondrial-encoded F(O)-subunit Atp6 after its insertion into the inner membrane. On the other hand and independent of its proteolytic activity, Atp23 promotes the association of mature Atp6 with Atp9 oligomers. This assembly step is thus under the control of two substrate-specific chaperones, Atp10 and Atp23, which act on opposite sides of the inner membrane. Strikingly, both ATP10 and ATP23 were found to genetically interact with prohibitins, which build up large, ring-like assemblies with a proposed scaffolding function in the inner membrane. Our results therefore characterize not only a novel processing peptidase with chaperone activity in the mitochondrial intermembrane space but also link the function of prohibitins to the F(1)F(O)-ATP synthase complex.  相似文献   

18.
Unlike most organisms, the mitochondrial DNA (mtDNA) of Chlamydomonas reinhardtii, a green alga, does not encode subunit 6 of F(0)F(1)-ATP synthase. We hypothesized that C. reinhardtii ATPase 6 is nucleus encoded and identified cDNAs and a single-copy nuclear gene specifying this subunit (CrATP6, with eight exons, four of which encode a mitochondrial targeting signal). Although the algal and human ATP6 genes are in different subcellular compartments and the encoded polypeptides are highly diverged, their secondary structures are remarkably similar. When CrATP6 was expressed in human cells, a significant amount of the precursor polypeptide was targeted to mitochondria, the mitochondrial targeting signal was cleaved within the organelle, and the mature polypeptide was assembled into human ATP synthase. In spite of the evolutionary distance between algae and mammals, C. reinhardtii ATPase 6 functioned in human cells, because deficiencies in both cell viability and ATP synthesis in transmitochondrial cell lines harboring a pathogenic mutation in the human mtDNA-encoded ATP6 gene were overcome by expression of CrATP6. The ability to express a nucleus-encoded version of a mammalian mtDNA-encoded protein may provide a way to import other highly hydrophobic proteins into mitochondria and could serve as the basis for a gene therapy approach to treat human mitochondrial diseases.  相似文献   

19.
Subunit h is a component of the peripheral stalk region of ATP synthase from Saccharomyces cerevisiae. It is weakly homologous to subunit F6 in the bovine enzyme, and F6 can replace the function of subunit h in a yeast strain from which the gene for subunit h has been deleted. The removal of subunit h (or F6) uncouples ATP synthesis from the proton motive force. A biotinylation signal has been introduced following the C terminus of subunit h. It becomes biotinylated in vivo, and allows avidin to be bound quantitatively to the purified enzyme complex in vitro. By electron microscopy of the ATP synthase-avidin complex in negative stain and by subsequent image analysis, the C terminus of subunit h has been located in a region of the peripheral stalk that is close to the Fo membrane domain of ATP synthase. Models of the peripheral stalk are proposed that are consistent with this location and with reconstitution experiments conducted with isolated peripheral stalk subunits.  相似文献   

20.
Atp11p and Atp12p were first described as proteins required for assembly of the F(1) component of the mitochondrial ATP synthase in Saccharomyces cerevisiae (Ackerman, S. H., and Tzagoloff, A. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 4986-4990). Here we report the isolation of the cDNAs and the characterization of the human genes for Atp11p and Atp12p and show that the human proteins function like their yeast counterparts. Human ATP11 spans 24 kilobase pairs in 9 exons and maps to 1p32.3-p33, while ATP12 contains > or =8 exons and localizes to 17p11.2. Both genes are broadly conserved in eukaryotes and are expressed in a wide range of tissues, which suggests that Atp11p and Atp12p are essential housekeeping proteins of human cells. The information reported herein will be useful in the evaluation of patients with ascertained deficiencies in the ATP synthase, in which the underlying biochemical defect is unknown and may reside in a protein that influences the assembly of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号