共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Exposure to camptothecin breaks leading and lagging strand simian virus 40 DNA replication forks 总被引:5,自引:0,他引:5
To better understand aberrant simian virus 40 DNA replication intermediates produced by exposure of infected cells to the anticancer drug camptothecin, we compared them to forms produced by S1 nuclease digestion of normal viral replication intermediates. All of the major forms were identical in both cases. Thus the aberrant viral replicating forms in camptothecin-treated cells result from DNA strand breaks at replication forks. Linear simian virus 40 forms which are produced by camptothecin exposure during viral replication were identified as detached DNA replication bubbles. This indicates that double strand DNA breaks caused by camptothecin-topoisomerase I complexes occur at both leading and lagging strand replication forks in vivo. 相似文献
4.
M Cordeiro-Stone A M Makhov L S Zaritskaya J D Griffith 《Journal of molecular biology》1999,289(5):1207-1218
Electron microscopy (EM) was used to visualize intermediates of in vitro replication of closed circular DNA plasmids. Cell-free extracts were prepared from human cells that are proficient (IDH4, HeLa) or deficient (CTag) in bypass replication of pyrimidine dimers. The DNA substrate was either undamaged or contained a single cis, syn thymine dimer. This lesion was inserted 385 bp downstream from the center of the SV40 origin of replication and sited specifically in the template to the leading strand of the newly synthesized DNA. Products from 30 minute reactions were crosslinked with psoralen and UV, linearized with restriction enzymes and spread for EM visualization. Extended single-stranded DNA regions were detected in damaged molecules replicated by either bypass-proficient or deficient extracts. These regions could be coated with Escherichia coli single-stranded DNA binding protein. The length of duplex DNA from a unique restriction site to the single-stranded DNA region was that predicted from blockage of leading strand synthesis by the site-specific dimer. These results were confirmed by S1nuclease treatment of replication products linearized with single cutting restriction enzymes, followed by detection of the diagnostic fragments by gel electrophoresis. The absence of an extended single-stranded DNA region in replication forks that were clearly beyond the dimer was taken as evidence of bypass replication. These criteria were fulfilled in 17 % of the molecules replicated by the IDH4 extract. 相似文献
5.
Nagata Y Kawaguchi G Tago Y Imai M Watanabe T Sakurai S Ihara M Kawata M Yamamoto K 《Genes & genetic systems》2005,80(1):1-8
Investigations were carried out to determine whether both DNA strands involved in Escherichia coli chromosomal DNA replication are replicated with similar accuracy. Experiments consisted of measuring the forward mutation rate from tonB(+) to tonB(-) in pairs of polA deficient strains in which the chromosomal target gene tonB was oriented in the two possible directions relative to the origin of replication, oriC. Within these pairs, the tonB sequence would be subjected to leading strand replication in one orientation and to lagging strand replication in the other. The most common tonB mutations in the polA1 strain were deletions followed by frameshifts. Among the deletions, a strong hotspot site with a 13-base deletion in the polA1 strains accounted for 18 of the 33 deletions in the one orientation, and 31 of the 58 deletions in the other. The results suggested that the two strands were replicated with equal or similar accuracy for deletion formation. 相似文献
6.
E. Grohmann M. Moscoso E. L. Zechner G. del Solar M. Espinosa 《Molecular & general genetics : MGG》1998,260(1):38-47
The lactococcal plasmid pFX2 belongs to a family of plasmids, whose prototype is the streptococcal plasmid pMV158, that replicates
by the rolling circle mechanism. Determination of the nucleotide sequence of the repX gene of pFX2 allowed us to make some minor corrections in the published sequence, and to show that the repX gene is identical to the rep gene of plasmid pWV01. We have established pFX2 in Escherichia coli and in Streptococcus pneumoniae. In the latter host, we have defined in vivo the nick site introduced by the RepX protein. Plasmid pFX2 and the pMV158 derivative
pLS1 exhibit a moderate degree of incompatibility in S. pneumoniae. Cloning of the double strand origin (dso) of pFX2 into a high-copy-number plasmid that is compatible with the pMV158 replicon led to an increase in incompatibility
toward pLS1. Plasmids pFX2 and pLS1 exhibit homologies in their Rep proteins and in their dso sequences, but not in their negative control elements. Thus, the observed incompatibility indicates that cross-recognition
of Rep proteins and dso takes place.
Received: 25 May 1998 / Accepted: 8 July 1998 相似文献
7.
Functional analysis of the leading strand replication origin of plasmid pUB110 in Bacillus subtilis. 总被引:2,自引:2,他引:2
Supercoiled plasmid DNA is the substrate for initiation of pUB110 replication, and - by inference - for binding of its initiator protein (RepU) to the plasmid replication origin (oriU) in vivo. No hairpin structure is required for RepU-oriU recognition. RepH (the pC194 replication initiation protein) failed to initiate replication in trans at oriU. The nucleotides that determine the specificity of the replication initiation process are located within oriU but termination is unefficient. Therefore the segment that forms the full recognition signal for termination is probably located 3' of the oriU recognition sequence. Two overlapping domains, one for initiation and one required for termination, compose the leading strand replication origin of plasmid pUB110. 相似文献
8.
G S Goetz S Englard T Schmidt-Glenewinkel A Aoyama M Hayashi J Hurwitz 《The Journal of biological chemistry》1988,263(31):16452-16460
The influence of the bacteriophage phi X174 (phi X) C protein on the replication of bacteriophage phi X174 DNA has been examined. This small viral protein, which is required for the packaging of phi X DNA into proheads, inhibits leading strand DNA synthesis. The inhibitory effect of the phi X C protein requires a DNA template bearing an intact 30-base pair (bp) phi X origin of DNA replication that is the target site recognized by the phi X A protein. Removal of nucleotides from the 3' end of this 30-bp conserved origin sequence prevents the inhibitory effects of the phi X C protein. Leading strand replication of supercoiled DNA substrates containing the wild-type phi X replication origin results in the production of single-stranded circular DNA as well as the formation of small amounts of multimeric and sigma structures. These aberrant products are formed when the termination and reinitiation steps of the replication pathway reactions are skipped as the replication fork moves through the origin sequence. Replication carried out in the presence of the phi X C protein leads to a marked decrease in these aberrant structures. While the exact mechanism of action of the phi X C protein is not clear, the results presented here suggest that the phi X C protein slows the movement of the replication fork through the 30-bp origin sequence, thereby increasing the fidelity of the termination and reinitiation reactions. In keeping with the requirement for the phi X C protein for efficient packaging of progeny phi X DNA into proheads, the phi X C protein-mediated inhibition of leading strand synthesis is reversed by the addition of proteins essential for phi X bacteriophage formation. Incubation of plasmid DNA substrates bearing mutant 30 base pair phi X origin sequences in the complete packaging system results in the in vitro packaging and production of infectious particles in a manner consistent with the replication activity of the origin under study. 相似文献
9.
Structural basis of the 3'-end recognition of a leading strand in stalled replication forks by PriA 总被引:1,自引:0,他引:1
Sasaki K Ose T Okamoto N Maenaka K Tanaka T Masai H Saito M Shirai T Kohda D 《The EMBO journal》2007,26(10):2584-2593
In eubacteria, PriA helicase detects the stalled DNA replication forks. This critical role of PriA is ascribed to its ability to bind to the 3' end of a nascent leading DNA strand in the stalled replication forks. The crystal structures in complexes with oligonucleotides and the combination of fluorescence correlation spectroscopy and mutagenesis reveal that the N-terminal domain of PriA possesses a binding pocket for the 3'-terminal nucleotide residue of DNA. The interaction with the deoxyribose 3'-OH is essential for the 3'-terminal recognition. In contrast, the direct interaction with 3'-end nucleobase is unexpected, considering the same affinity for oligonucleotides carrying the four bases at the 3' end. Thus, the N-terminal domain of PriA recognizes the 3'-end base in a base-non-selective manner, in addition to the deoxyribose and 5'-side phosphodiester group, of the 3'-terminal nucleotide to acquire both sufficient affinity and non-selectivity to find all of the stalled replication forks generated during DNA duplication. This unique feature is prerequisite for the proper positioning of the helicase domain of PriA on the unreplicated double-stranded DNA. 相似文献
10.
The fidelity of the human leading and lagging strand DNA replication apparatus with 8-oxodeoxyguanosine triphosphate.
下载免费PDF全文

A product of oxidative metabolism, 8-oxodeoxyguanosine triphosphate (8-O-dGTP), readily pairs with adenine during DNA replication, ultimately causing A.T-->C.G transversions. This study utilized 8-O-dGTP as a probe to examine the fidelity of the leading and lagging strand replication apparatus in extracts of HeLa cells. Simian virus (SV) 40 T antigen-dependent DNA replication reactions were performed with two M13mp2 vectors with the SV40 origin located on opposite sides of the lacZ alpha sequence used to score replication errors. The presence of 8-O-dGTP at equimolar concentration with each of the 4 normal dNTPs resulted in a > 46-fold increase in error rate for A.T-->C.G transversion over that observed in the absence of 8-O-dGTP. A similar average error rate was observed on the (+) and (-) strands in both vectors, suggesting that the fidelity of replication by leading and lagging strand replication proteins is similar for the dA.8-O-dGMP mispair. Replication fidelity in the presence of 8-O-dGTP was reduced on both strands when an inhibitor of exonucleolytic proofreading (dGMP) was added to the reaction. These data suggest that the majority of dA.8-O-dGMP mispairs are proofread by both leading and lagging strand replication proteins. 相似文献
11.
DNA replication in eucaryotic cells involves a variety of proteins which synthesize the leading and lagging strands in an asymmetric coordinated manner. To analyse the effect of this asymmetry on the translesion synthesis of UV-induced lesions, we have incubated SV40 origin-containing plasmids with a unique site-specific cis, syn-cyclobutane dimer or a pyrimidine-pyrimidone (6-4) photoproduct on either the leading or lagging strand template with DNA replication-competent extracts made from human HeLa cells. Two dimensional agarose gel electrophoresis analyses revealed a strong blockage of fork progression only when the UV lesion is located on the leading strand template. Because DNA helicases are responsible for unwinding duplex DNA ahead of the fork and are then the first component to encounter any potential lesion, we tested the effect of these single photoproducts on the unwinding activity of the SV40 T antigen, the major helicase in our in vitro replication assay. We showed that the activity of the SV40 T-antigen helicase is not inhibited by UV-induced DNA lesions in double-stranded DNA substrate. 相似文献
12.
The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units
下载免费PDF全文

Sasaki T Ramanathan S Okuno Y Kumagai C Shaikh SS Gilbert DM 《Molecular and cellular biology》2006,26(3):1051-1062
13.
14.
To ascertain a leading or lagging strand preference for duplication mutations, several short DNA sequences, i.e. mutation inserts, were designed that should demonstrate an asymmetric propensity for duplication mutations in the two complementary DNA strands during replication. The design of the mutation insert involved a 7-bp quasi inverted repeat that forms a remarkably stable hairpin in one DNA strand, but not the other. The inverted repeat is asymmetrically placed between flanking direct repeats. This sequence was cloned into a modified chloramphenicol acetyltransferase (CAT) gene containing a −1 frameshift mutation. Duplication of the mutation insert restores the reading frame of the CAT gene resulting in a chloramphenicol resistant phenotype. The mutation insert showed greater than a 200-fold preference for duplication mutations during leading strand, compared with lagging strand, replication. This result suggests that misalignment stabilized by DNA secondary structure, leading to duplication between direct repeats, occurred preferentially during leading strand synthesis. 相似文献
15.
16.
17.
Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5'-phosphorylated DNA double-strand breaks by replication runoff
下载免费PDF全文

Strumberg D Pilon AA Smith M Hickey R Malkas L Pommier Y 《Molecular and cellular biology》2000,20(11):3977-3987
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA. 相似文献
18.
19.
Stem-loop hairpins formed by mitochondrial light strand replication origins (OL) and by heavy strand DNA coding for tRNAs that form OL-like structures initiate mitochondrial replication. The loops are recognized by one of the two active sites of the vertebrate mitochondrial gamma polymerase, which are homologuous to the active sites of class II amino-acyl tRNA synthetases. Therefore, the polymerase site recognizing the OL loop could recognize tRNA anticodon loops and sequence similarity between anticodon and OL loops should predict initiation of DNA replication at tRNAs. Strengths of genome-wide deamination gradients starting at tRNA genes estimate extents by which replication starts at that tRNA. Deaminations (A→G and C→T) occur proportionally to time spent single stranded by heavy strand DNA during mitochondrial light strand replication. Results show that deamination gradients starting at tRNAs are proportional to sequence similarity between OL and tRNA loops: most for anticodon-, least D-, intermediate for TψC-loops, paralleling tRNA synthetase recognition interactions with these tRNA loops. Structural and sequence similarities with regular OLs predict OL function, loop similarity is dominant in most tRNAs. Analyses of sequence similarity and structure independently substantiate that DNA sequences coding for mitochondrial tRNAs sometimes function as alternative OLs. Pathogenic mutations in anticodon loops increase similarity with the human OL loop, non-pathogenic polymorphisms do not. Similarity/homology alignment hypotheses are experimentally testable in this system. 相似文献
20.
Messer W 《FEMS microbiology reviews》2002,26(4):355-374
The initiation of replication is the central event in the bacterial cell cycle. Cells control the rate of DNA synthesis by modulating the frequency with which new chains are initiated, like all macromolecular synthesis. The end of the replication cycle provides a checkpoint that must be executed for cell division to occur. This review summarizes recent insight into the biochemistry, genetics and control of the initiation of replication in bacteria, and the central role of the initiator protein DnaA. 相似文献