首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
We have identified a novel RING-B-box-coiled-coil (RBCC) protein (MAIR for macrophage-derived apoptosis-inducing RBCC protein) that consists of an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil domain, and a B30.2 domain. MAIR mRNA was expressed widely in mouse tissues and was induced by macrophage colony-stimulating factor in murine peritoneal and bone marrow macrophages. MAIR protein initially showed a granular distribution predominantly in the cytoplasm. The addition of zinc to transfectants containing MAIR cDNA as part of a heavy metal-inducible vector caused apoptosis of the cells characterized by cell fragmentation; a reduction in mitochondrial membrane potential; activation of caspase-7, -8, and -9, but not caspase-3; and DNA degradation. We also found that the RING finger and coiled-coil domains were required for MAIR activity by analysis with deletion mutants.  相似文献   

4.
TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases   总被引:10,自引:0,他引:10  
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.  相似文献   

5.
6.
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.  相似文献   

7.
The Bcl-2 family proteins comprise pro-apoptotic as well as anti-apoptotic members. Heterodimerization between members of the Bcl-2 family proteins is a key event in the regulation of apoptosis. We report here that Bcl-2 protein was selectively cleaved by active caspase-3-like proteases in CTLL-2 cell apoptosis in response to interleukin-2 deprivation. Structural and functional analyses of the cleaved fragment revealed that the NH2-terminal region of Bcl-2 (1-34 amid acids) was required for its anti-apoptotic activity and heterodimerization with pro-apoptotic Bax protein. Site-directed mutagenesis of the NH2-terminal region showed that substitutions of hydrophobic residues of BH4 domain resulted in the loss of ability to form a heterodimer with Bax. Particularly instructive was that the V15E mutant of Bcl-2, which completely lost the ability to form a heterodimer with Bax, failed to inhibit Bax- and staurosporine-induced apoptosis. Our results suggest that the BH4 domain of Bcl-2 is critical for its heterodimerization with Bax and for exhibiting anti-apoptotic activity. Therefore, agents interferring with the critical residues of the BH4 domain may provide a new strategy in cancer therapy by impairing Bcl-2 function.  相似文献   

8.
9.
10.
11.
The dihydrochalcone phloretin induced apoptosis in B16 mouse melanoma 4A5 cells and HL60 human leukemia cells. Phloretin was suggested to induce apoptosis in B16 cells mainly through the inhibition of glucose transmembrane transport. The phloretin-induced apoptosis in B16 cells was inhibited by actinomycin D, Ac-YVAD-CHO caspase-1-like inhibitor, and Ac-DEVD-CHO caspase-3-like inhibitor. During the induction of apoptosis by phloretin, the expression of Bax protein in B16 cells increased and the levels of p53, Bcl-2, and Bcl-XL proteins did not change. Our results suggested that phloretin induced apoptosis through the promotion of Bax protein expression and caspases activation. On the other hand, phloretin may induce apoptosis in HL60 cells through the inhibition of protein kinase C activity because phloretin inhibited protein kinase C activity in HL60 cells more than that in B16 cells. The phloretin induced-apoptosis in HL60 cells was not inhibited by actinomycin D and the caspase-1-like inhibitor, but slightly inhibited by the caspase-3-like inhibitor. Phloretin reduced the level of caspase 3 protein in HL60 cells, but not the level of the Bcl-2 protein. Phloretin did not increase the level of Bax protein. Phloretin was suggested to induce apoptosis in HL60 cells through the inhibition of protein kinase C activity, followed by the pathway, which is different from that in B16 cells.  相似文献   

12.
The acrosome reaction (i.e. the exocytosis of the sperm vesicle) is a prerequisite for fertilization, but its molecular mechanism is largely unknown. We have identified a cDNA clone for a gene named haprin, which encodes a haploid germ cell-specific RING finger protein. This protein is a novel member of the RBCC (RING finger, B-box type zinc finger, and coiled-coil domain) motif family that has roles in several cellular processes, such as exocytosis. It is transcribed exclusively in testicular germ cells after meiotic division. Western blot and immunohistochemical analyses showed the molecular weight of Haprin protein to be Mr approximately 82,000. It was localized in the acrosomal region of elongated spermatids and mature sperm and was not present in acrosome-reacted sperm. The specific antibody against the RING finger domain of Haprin inhibited the acrosome reaction in permeabilized sperm. These results indicated that the novel RBCC protein Haprin plays a key role in the acrosome reaction and fertilization.  相似文献   

13.
Guo Y  Halfter U  Ishitani M  Zhu JK 《The Plant cell》2001,13(6):1383-1400
The SOS3 (for SALT OVERLY SENSITIVE3) calcium binding protein and SOS2 protein kinase are required for sodium and potassium ion homeostasis and salt tolerance in Arabidopsis. We have shown previously that SOS3 interacts with and activates the SOS2 protein kinase. We report here the identification of a SOS3 binding motif in SOS2 that also serves as the kinase autoinhibitory domain. Yeast two-hybrid assays as well as in vitro binding assays revealed a 21-amino acid motif in the regulatory domain of SOS2 that is necessary and sufficient for interaction with SOS3. Database searches revealed a large family of SOS2-like protein kinases containing such a SOS3 binding motif. Using a yeast two-hybrid system, we show that these SOS2-like kinases interact with members of the SOS3 family of calcium binding proteins. Two-hybrid assays also revealed interaction between the N-terminal kinase domain and the C-terminal regulatory domain within SOS2, suggesting that the regulatory domain may inhibit kinase activity by blocking substrate access to the catalytic site. Removal of the regulatory domain of SOS2, including the SOS3 binding motif, resulted in constitutive activation of the protein kinase, indicating that the SOS3 binding motif can serve as a kinase autoinhibitory domain. Constitutively active SOS2 that is SOS3 independent also was produced by changing Thr(168) to Asp in the activation loop of the SOS2 kinase domain. Combining the Thr(168)-to-Asp mutation with the autoinhibitory domain deletion created a superactive SOS2 kinase. These results provide insights into regulation of the kinase activities of SOS2 and the SOS2 family of protein kinases.  相似文献   

14.
Monocytes are central components of the innate immune response and normally circulate for a short period of time before undergoing spontaneous apoptosis. During inflammation, differentiation, or oncogenic transformation, the life span of monocytes is prolonged by preventing the activation of the apoptotic program. Here we showed that caspase-3, a cysteine protease required for monocyte apoptosis, is a phosphoprotein. We identified protein kinase Cdelta (PKCdelta) as a member of the protein kinase C family that associates with and phosphorylates caspase-3. The PKCdelta-dependent phosphorylation of caspase-3 resulted in an increase in the activity of caspase-3. This effect of PKCdelta is specific to caspase-3, as evidenced by the absence of similar effects on caspase-9. The activity of PKCdelta precedes the activation of caspase-3 during spontaneous monocyte apoptosis and in monocyte-induced apoptosis. We found that the overexpression of PKCdelta resulted in an increase of apoptosis, whereas its inhibition blocked caspase-3 activity and decreased apoptosis. Our results provided evidence that the PKCdelta-dependent phosphorylation of caspase-3 provided a novel pro-apoptotic mechanism involved in the regulation of monocyte life span.  相似文献   

15.
The biological significance of RBCC (N-terminal RING finger/B-box/coiled coil) proteins is increasingly being appreciated following demonstrated roles in disease pathogenesis, tumorigenesis, and retroviral protective activity. Found in all multicellular eukaryotes, RBCC proteins are involved in a vast array of intracellular functions; but as a general rule, they appear to function as part of large protein complexes and possess ubiquitin-protein isopeptide ligase activity. Those members characterized to date have diverse C-terminal domain compositions and equally diverse subcellular localizations and functions. Using a bioinformatics approach, we have identified some new RBCC proteins that help define a subfamily that shares an identical domain arrangement (MID1, MID2, TRIM9, TNL, TRIM36, and TRIFIC). Significantly, we show that all analyzed members of this subfamily associate with the microtubule cytoskeleton, suggesting that subcellular compartmentalization is determined by the unique domain architecture, which may in turn reflect basic functional similarities. We also report a new motif called the COS box, which is found within these proteins, the MURF family, and a distantly related non-RBCC microtubule-binding protein. Notably, we demonstrate that mutations in the COS box abolish microtubule binding ability, whereas its incorporation into a nonmicrotubule-binding RBCC protein redirects it to microtubule structures. Further bioinformatics investigation permitted subclassification of the entire human RBCC complement into nine subfamilies based on their varied C-terminal domain compositions. This classification schema may aid the understanding of the molecular function of members of each subgroup and their potential involvement in both basic cellular processes and human disease.  相似文献   

16.
Expression and activity of the germinal center kinase, Ste20-like kinase (SLK), are increased during kidney development and recovery from ischemic acute renal failure. In this study, we characterize the activation and functional role of SLK. SLK underwent dimerization via the C-terminal domain, and dimerization enhanced SLK activity. In contrast, the C-terminal domain of SLK did not dimerize with a related kinase, Mst1, and did not affect Mst1 activity. Phosphorylation/dephosphorylation of SLK were not associated with changes in kinase activity. SLK induced phosphorylation of apoptosis signal-regulating kinase-1 (ASK1) and increased ASK1 activity, indicating that ASK1 is a substrate of SLK. Moreover, SLK stimulated phosphorylation of p38 mitogen-activated protein kinase via ASK1, but not c-Jun N-terminal kinase nor extracellular signal-regulated kinase. Chemical anoxia and recovery during re-exposure to glucose (ischemia-reperfusion injury in cell culture) stimulated SLK activity. Overexpression of SLK enhanced anoxia/recovery-induced apoptosis, release of cytochrome c, and activities of caspase-8 and -9, and apoptosis was reduced significantly with p38 and caspase-9 inhibitors. Induction of the endoplasmic reticulum stress response by anoxia/recovery or tunicamycin (monitored by induction of Bip or Grp94 expression, phosphorylation of eukaryotic translation initiation factor 2alpha subunit, expression of CHOP, and activation of caspase-12) was attenuated in cells that overexpress SLK. Thus, SLK is an anoxia/recovery-dependent kinase that is activated via homodimerization and that signals via ASK1 and p38 to promote apoptosis. Attenuation of the protective aspects of the endoplasmic reticulum stress response by SLK may contribute to its proapoptotic effect.  相似文献   

17.
18.
Zhang B  Huang J  Li HL  Liu T  Wang YY  Waterman P  Mao AP  Xu LG  Zhai Z  Liu D  Marrack P  Shu HB 《Cell research》2008,18(9):900-910
Here, we report the identification of GIDE, a mitochondrially located E3 ubiquitin ligase. GIDE contains a C-terminal RING finger domain, which is mostly conserved with those of the lAP family members and is required for GIDE's E3 ligase activity. Overexpression of GIDE induces apoptosis via a pathway involving activation of caspases, since caspase inhibitors, XIAP and an inactive mutant of caspase-9 block GIDE-induced apoptosis. GIDE also activates JNK, and blockage of JNK activation inhibits GIDE-induced release of cytochrome c and Smac as well as apoptosis, suggesting that JNK activation precedes release of cytochrome c and Smac and is required for GIDE- induced apoptosis. These pro-apoptotic properties of GIDE require its E3 ligase activity. When somewhat over-or underexpressed, GIDE slows or accelerates cell growth, respectively. These pro-apoptotic or growth inhibition effects of GIDE may account for its absence in tumor cells.  相似文献   

19.
20.
Members of the IAP (inhibitor of apoptosis) family function as anti-apoptotic proteins by binding directly to caspase-3, -7, and -9 to inhibit their activities. During apoptosis, the activities of IAPs are relieved by a second mitochondria-derived caspase activator, named Smac/DIABLO. Some IAPs have a C-terminal RING finger domain that has been identified as the essential motif for the activity of ubiquitin ligase (E3). Here we show that X-linked IAP (XIAP) mediates the polyubiquitination of caspase-9 and Smac. The large subunit of mature caspase-9 was polyubiquitinated by XIAP in vitro, while procaspase-9 was not. Furthermore, the polyubiquitinated form of caspase-9 accumulated in an XIAP-dependent manner in intact cells. The ubiquitination of caspase-9 was significantly inhibited in the presence of mature Smac, whereas XIAP was also found to promote the polyubiquitination of cytosolic Smac both in vitro and in intact cells. These ubiquitination reactions require the RING finger domain of XIAP. These findings suggest that XIAP functions as ubiquitin ligase toward mature caspase-9 and Smac to inhibit apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号