共查询到20条相似文献,搜索用时 15 毫秒
1.
Coevolution of roots and mycorrhizas of land plants 总被引:25,自引:7,他引:25
Mark C. Brundrett 《The New phytologist》2002,154(2):275-304
2.
During the establishment of vesicular-arbuscular mycorrhizas, fungal hyphae contact the root surface, form appressoria and
initiate the internal colonization phase. Structural changes occur in the cell wall, the cytoplasm and the nucleus as the
fungus progresses from a presymbiotic to a symbiotic phase. Nuclei in spores are in G1 whereas in intraradical hyphae they are in G1 and G2. Changes in nuclear organization are evident in various stages in the colonization process. Dramatic changes in both symbionts
occur as the nutrient exchange interface is established between arbuscules and root cortical cells. An interfacial matrix,
consisting of molecules common to the primary wall of the cortical cell, separates the cortical cell plasma membrane from
the fungal cell wall.
Ectomycorrhizas are characterized structurally by the presence of a mantle of fungal hyphae enclosing the root and usually
an Hartig net of intercellular hyphae characterized by labyrinthine branching. As hyphae contact the root surface, they may
respond by increasing their diameter and switching from apical growth to precocious branching. The site of initial contact
of hyphae may be either the root cap or the ‘mycorrhiza infection zone’. The mantle varies considerably in structure depending
on both the plant and fungus genome. In some ectomycorrhizas, the mantle may be a barrier to apoplastic transport, and in
most it may store polyphosphate, glycogen, lipids and perhaps protein. 相似文献
3.
A. CODIGNOLA L. VEROTTA P. SPANU M. MAFFEI S. SCANNERINI P. BONFANTE-FASOLO 《The New phytologist》1989,112(2):221-228
4.
The cycling of nutrients from dying roots of one plant (the donor) to other intact plants (the receivers) was examined in a series of pot experiments. In each pot receiver plants formed either the same or a different type of mycorrhiza as the donor plant and was therefore respectively either capable or incapable of forming mycorrhizal hyphal links to the donor. There was a preferential transfer of 32P from the dying roots of the vesicular-arbuscular mycorrhizal (VAM) Lolium perenne to VAM-infected trees Acer pseudoplatanus and Fraxinus excelsior compared to the ectomycorrhizal (ECM) Larix eurolepis, this despite an apparently greater competitive ability of L. eurolepis to obtain 32P from the soil. Following the death of L. perenne roots there was also an increase in total P in the VAM tree receiver. These findings could not be explained by similarities in rooting distribution of the VAM-infected plants.In a similar study of the transfer of 32P between heathland plants there was a preferential cycling of 32P from one ericoid mycorrhizal Calluna vulgaris to another rather than to the VAM Molinia caerulea. In contrast, when 32P was supplied directly to the soil, M. caerulea obtained significantly more 32P than C. vulgaris. These results are discussed in relation to the potential role of interplant mycorrhizal links in the cycling of nutrients within partially closed cycles and the implications that this might have for species balance in plant communities. 相似文献
5.
6.
An ecological view of the formation of VA mycorrhizas 总被引:3,自引:0,他引:3
In spite of the major advances in understanding the functioning of symbioses between plants and arbuscular mycorrhizal fungi, details of the ecology of mycorrhizal fungi are not well documented. The benefits of the association are related to the timing and extent of colonization of roots, and fungi differ in their contribution to plant growth and presumably to soil aggregation. Knowledge of the processes that lead to successful colonization of roots by beneficial fungi at appropriate times for the host plants will form the basis of guidelines for soil management to maximize the benefits from the symbiosis. Fungi differ in the manner and extent to which they colonize roots. They also differ in their capacity to form propagules. The importance of hyphae, spores and propagules within living or dead mycorrhizal roots also differs among species and for the same species in different habitats. The relationships between colonization of roots and propagule formation, and between propagule distribution and abundance and subsequent mycorrhiza formation, for different fungi in field environments, are not well understood. Methods for quantifying mycorrhizal fungi are not especially suitable for distinguishing among different fungi within roots. Consequenctly, the dynamics of colonization of roots by different fungi, within and between seasons, have been little studied. Research is required that focuses on the dynamics of fungi within roots as well as on changes in the abundance of propagules of different fungi within soil. Interactions between fungi during the colonization of roots, the colonization of soil by hyphae and sporulation are all poorly understood. Without knowledge of these processes, it will by difficult to predict the likely success of inoculation with introduced fungi. Such knowledge is also required for selecting soil management procedures to enhance growth and survival of key species within the population. The relative tolerance of various fungi to perturbations in their surroundings will provide a basis for identifying those fungi that are likely to persist in specific environments. The processes that influence mycorrhizal fungi in field soils can be identified in controlled studies. However, greater emphasis is required on studying these processes with mixed populations of fungi. The role played by diversity within populations of mycorrhizal fungi is virtually unexplored. 相似文献
7.
8.
9.
Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest 总被引:5,自引:0,他引:5
Very limited information regarding fine-root growth and production of tropical dry forests is available. Fine roots and small roots are defined as rootlets with diameters < 1 mm and 1.1 to 5 mm, respectively. Live and dead fine-and small-root mass fluctuations were studied over one year by means of soil core analyses in the deciduous dry forest of Chamela, Mexico, at 19° 30, 2 km inland from the Pacific Ocean. By means of systematically varying the distance of soil core extraction points from tree stems, it was shown that random core collection is justified. A difference between fine-root biomass on south and north facing slopes was documented, although this difference was significant only during the rainy season. The live/dead ratio of fine roots was highest during the rainy period. The annual fine-root production for 1989 was estimated at 4.23 Mg ha-1 by summing significant fine-root biomass changes between sampling dates. This value is higher than most of the comparable data from other ecosystems. 相似文献
10.
11.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops. 相似文献
12.
Phylogenetic distribution and evolution of mycorrhizas in land plants 总被引:27,自引:0,他引:27
A survey of 659 papers mostly published since 1987 was conducted to compile a checklist of mycorrhizal occurrence among 3,617 species (263 families) of land plants. A plant phylogeny was then used to map the mycorrhizal information to examine evolutionary patterns. Several findings from this survey enhance our understanding of the roles of mycorrhizas in the origin and subsequent diversification of land plants. First, 80 and 92% of surveyed land plant species and families are mycorrhizal. Second, arbuscular mycorrhiza (AM) is the predominant and ancestral type of mycorrhiza in land plants. Its occurrence in a vast majority of land plants and early-diverging lineages of liverworts suggests that the origin of AM probably coincided with the origin of land plants. Third, ectomycorrhiza (ECM) and its derived types independently evolved from AM many times through parallel evolution. Coevolution between plant and fungal partners in ECM and its derived types has probably contributed to diversification of both plant hosts and fungal symbionts. Fourth, mycoheterotrophy and loss of the mycorrhizal condition also evolved many times independently in land plants through parallel evolution. 相似文献
13.
Leek plants (Allium porrum L.) inoculated with Glomus mosseae were raised on sterilized soil/sand medium amended with Ca(H2PO4)2.H2O to test the hypothesis that high concentration of soil P inhibits formation of vesicular-arbuscular (VA) mycorrhizas by reducing concentration of soluble carbohydrate in the root. When P supply was increased, from either P addition or VA mycorrhizal infection, there was initially also an increase in concentration of soluble carbohydrate in the root. At the concentration of soil P at which infection was reduced, concentration of soluble carbohydrate was at its maximum. Therefore the above hypothesis is discounted. An increased delay in infection establishment and a greater number of abortive entry points would suggest that high concentration of soil P reduces VA mycorrhizal infection by changing the anatomy of the root to make it resistant to fungal penetration. 相似文献
14.
Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants
Transformation of Nicotiana tabacum cv. Xanthi leaf sections with the pPCV002-ABC (rol genes A, B and C together under the control of their own promoter) or pPCV002-CaMVC (rol gene C alone under the control of the CaMV 35S promoter) construction present in trans-acting Agrobacterium tumefaciens vectors yielded several transgenic root lines. The two types (rolABC and rolC) of transgenic root lines were examined for their nicotine productivity in relation to growth rate and the amount of rolC gene product measured with specific antibodies. In all cases, the changes in the amount of this polypeptide were positively
correlated with the capacity of the transgenic roots to grow and produce nicotine. Both capacities were greatly increased
when the rolA, rolB and rolC genes were present together, which demonstrates that the activity of the three rol-gene-encoded functions is synergistic. Consistent observations were also made in the corresponding regenerated plants.
Received: 22 February 1997 / Revision received: 22 April 1997 / Accepted: 1 June 1997 相似文献
15.
Morphology of arbuscular mycorrhizas is influenced by fungal identity 总被引:11,自引:0,他引:11
16.
Roberts SK 《The New phytologist》2006,169(4):647-666
Recent years have seen considerable progress in identifying anion channel activities in higher plant cells. This review outlines the functional properties of plasma membrane anion channels in plant cells and discusses their likely roles in root function. Plant anion channels can be grouped according to their voltage dependence and kinetics: (1) depolarization-activated anion channels which mediate either anion efflux (R and S types) or anion influx (outwardly rectifying type); (2) hyperpolarization-activated anion channels which mediate anion efflux, and (3) anion channels activated by light or membrane stretch. These types of anion channel are apparent in root cells where they may function in anion homeostasis, membrane stabilization, osmoregulation, boron tolerance and regulation of passive salt loading into the xylem vessels. In addition, roots possess anion channels exhibiting unique properties which are consistent with them having specialized functions in root physiology. Most notable are the organic anion selective channels, which are regulated by extracellular Al3+ or the phosphate status of the plant. Finally, although the molecular identities of plant anion channels remain elusive, the diverse electrophysiological properties of plant anion channels suggest that large and diverse multigene families probably encode these channels. 相似文献
17.
Different characteristics of roots in the cadmium-tolerance and Cd-binding complex formation between mono- and dicotyledonous plants 总被引:3,自引:0,他引:3
Masahiro Inouhe Satoka Ninomiya Hiroshi Tohoyama Masanori Joho Tetsuo Murayama 《Journal of plant research》1994,107(3):201-207
Effects of Cd2+ on growth and Cd-binding complex formation in roots were examined with various seedlings of mono- and dicotyledonous plants.
Maize, oat, barley and rice exhibited the greater tolerance to Cd2+ (100 μM) than did azuki bean, cucumber, lettuce, pea, radish, sesame and tomato (10–30 μM). Azuki bean was the most sensitive
to Cd2+ (<10 μM). Under these Cd-treatments, cereal roots accumulated Cd2+ in the cytoplasmic fractions and transported Cd2+ into the same fractions of shoot tissues, to larger extents than did dicotyledonous roots. Cereal roots synthesized a Cd-binding
complex containing phytochelatins in the cytoplasmic fractions, depending upon Cd2+ concentrations applied (30–100 μM). Such a complex was not detected from the same fractions of dicotyledonous roots treated
with Cd2+. These results suggest that the Cd-binding complex formation has an important role in the tolerance of cereal roots against
Cd2+. 相似文献
18.
19.
20.
The distribution of arbuscular mycorrhizas in the British flora 总被引:8,自引:1,他引:7