首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26°C to 34°C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide. Heating the cultures for 6 or 12 h at 34°C, which converts the promastigotes into an ellipsoidally shaped intermediate form, decreased the rates of oxidation of glucose, alanine, and glutamate. The oxidation of glutamate decreased by about 50% and 70% after a 6-h or 12-h heat treatment, respectively. Returning the heated cultures to 26°C initiated a reversion to the promastigote form and recovery of the rate of glucose oxidation, but glutamate oxidation did not return to control levels by 19 h at 26°C.  相似文献   

2.
The pentose cycle and insulin release in mouse pancreatic islets   总被引:35,自引:17,他引:18  
1. Rates of insulin release, glucose utilization (measured as [(3)H]water formation from [5-(3)H]glucose) and glucose oxidation (measured as (14)CO(2) formation from [1-(14)C]- or [6-(14)C]-glucose) were determined in mouse pancreatic islets incubated in vitro, and were used to estimate the rate of oxidation of glucose by the pentose cycle pathway under various conditions. Rates of oxidation of [U-(14)C]ribose and [U-(14)C]xylitol were also measured. 2. Insulin secretion was stimulated fivefold when the medium glucose concentration was raised from 3.3 to 16.7mm in the absence of caffeine; in the presence of caffeine (5mm) a similar increase in glucose concentration evoked a much larger (30-fold) increase in insulin release. Glucose utilization was also increased severalfold as the intracellular glucose concentration was raised over this range, particularly between 5 and 11mm, but the rate of oxidation of glucose via the pentose cycle was not increased. 3. Glucosamine (20mm) inhibited glucose-stimulated insulin release and glucose utilization but not glucose metabolism via the pentose cycle. No evidence was obtained for any selective effect on the metabolism of glucose via the pentose cycle of tolbutamide, glibenclamide, dibutyryl 3':5'-cyclic AMP, glucagon, caffeine, theophylline, ouabain, adrenaline, colchicine, mannoheptulose or iodoacetamide. Phenazine methosulphate (5mum) increased pentose-cycle flux but inhibited glucose-stimulated insulin release. 4. No formation of (14)CO(2) from [U-(14)C]ribose could be detected: [U-(14)C]xylitol gave rise to small amounts of (14)CO(2). Ribose and xylitol had no effect on the rate of oxidation of glucose; ribitol and xylitol had no effect on the rate of glucose utilization. Ribose, ribitol and xylitol did not stimulate insulin release under conditions in which glucose produced a large stimulation. 5. It is concluded that in normal mouse islets glucose metabolism via the pentose cycle does not play a primary role in insulin-secretory responses.  相似文献   

3.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

4.
1. The metabolism of L-alanine was studied in isolated guinea-pig kidney-cortex tubules. 2. In contrast with previous conclusions of Krebs [(1935) Biochem. J. 29, 1951-1969], glutamine was found to be the main carbon and nitrogenous product of the metabolism of alanine (at 1 and 5 mM). Glutamate and ammonia were only minor products. 3. At neither concentration of alanine was there accumulation of glucose, glycogen, pyruvate, lactate, aspartate or tricarboxylic acid-cycle intermediates. 4. Carbon-balance calculations and the release of 14CO2 from [U-14C]alanine indicate that oxidation of the alanine carbon skeleton occurred at both substrate concentrations. 5. A pathway involving alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, pyruvate carboxylase and enzymes of the tricarboxylic acid cycle is proposed for the conversion of alanine into glutamine. 6. Strong evidence for this pathway was obtained by: (i) suppressing alanine removal by amino-oxyacetate, and inhibitor of transaminases, (ii) measuring the release of 14CO2 from [1-14C]alanine, (iii) the use of L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which induced a large increase in ammonia release from alanine, and (iv) the use of fluoroacetate, an inhibitor of aconitase, which inhibited glutamine synthesis with concomitant accumulation of citrate from alanine. 7. In this pathway, the central role of pyruvate carboxylase, which explains the discrepancy between our results and those of Krebs (1935), was also demonstrated.  相似文献   

5.
This study was carried out to examine the metabolism of [1-14C]-, [6-14C]-, and [5-3H]glucose by oocyte-cumulus cell complexes (OCC) and denuded oocytes (DO) and to test the hypothesis that metabolism of glucose through the pentose phosphate pathway is associated with meiotic induction. OCC or DO were cultured in hanging drops suspended from the cap of a microfuge tube, with NaOH serving as a trap to collect released 3H2O or 14CO2. Preliminary experiments established that this culture system supports both spontaneous and ligand-induced meiotic maturation. An initial time course experiment (1.5-6 h) showed that hypoxanthine-treated OCC from eCG-primed animals metabolized glucose principally via glycolysis, with an increase to 2.7-fold in response to FSH. Though more [1-14C]glucose was oxidized than [6-14C]glucose, its metabolism was about two orders of magnitude less than that of [5-3H]glucose. Also, FSH significantly increased oxidation of [1-14C]glucose but not [6-14C]glucose, indicating a preferential activation of the pentose phosphate pathway. Pyrroline carboxylate, an activator of the pentose phosphate pathway, increased the activity of this pathway to over 2-fold but failed to affect glucose oxidation through the tricarboxylic acid cycle. Glycolytic metabolism was increased by 25%. The addition of pyruvate to pyruvate-free medium resulted in significant reduction in the metabolism of all three glucose analogues. In OCC retrieved from hCG-injected, primed mice and cultured under hormone-free conditions, metabolic responses were similar to those in FSH-treated complexes cultured in hypoxanthine. DO metabolized glucose, but at a much reduced rate when compared to OCC. Pyruvate reduced the consumption of all three glucose analogues by DO. Pyrroline carboxylate reduced [5-3H]glucose metabolism by DO but had little effect on [1-14C]- and [6-14C]glucose oxidation. These data demonstrate metabolism of glucose by both DO and OCC, but reveal that cumulus cells are more active than the oocyte in this regard. In addition, induction of maturation by FSH, hCG, or pyrroline carboxylate was accompanied by a significant increase in the oxidation of [1-14C]glucose but not [6-14C]glucose by OCC, supporting a proposed role for the pentose phosphate pathway in meiotic induction.  相似文献   

6.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

8.
1. The reactions of the pentose phosphate cycle were investigated by the intraportal infusion of specifically labelled [(14)C]glucose or [(14)C]ribose into the liver of the anaesthetized rabbit. The sugars were confined in the liver by haemostasis and metabolism was allowed to proceed for periods up to 5min. Metabolism was assessed by measuring the rate of change of the specific radioactivity of CO(2), the carbon atoms of glucose 6-phosphate, fructose 6-phosphate and tissue glucose. 2. The quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose as measured by the incorporation into respiratory CO(2) was greater than 1.0 during most of the time-course and increased to a maximum of 3.1 but was found to decrease markedly upon application of a glucose load. 3. The estimate of the pentose phosphate cycle from C-1/C-2 ratios generally increased during the time-course, whereas the estimate of the pentose phosphate cycle from C-3/C-2 ratios varied depending on whether the ratios were measured in glucose or hexose 6-phosphates. 4. The distribution of (14)C in hexose 6-phosphate after the metabolism of [1-(14)C]ribose showed that 65-95% of the label was in C-1 and was concluded to have been the result of a rapidly acting transketolase exchange reaction. 5. Transaldolase exchange reactions catalysed extensive transfer of (14)C from [2-(14)C]glucose into C-5 of the hexose 6-phosphates during the entire time-course. The high concentration of label in C-4, C-5 and C-6 of the hexose 6-phosphates was not seen in tissue glucose in spite of an unchanging rate of glucose production during the time-course. 6. It is concluded that the reaction sequences catalysed by the pentose phosphate pathway enzymes do not constitute a formal metabolic cycle in intact liver, neither do they allow the definition of a fixed stoicheiometry for the dissimilation of glucose.  相似文献   

9.
Drosophila melanogaster has become a prominent and convenient model for analysis of insulin action. However, to date very little is known regarding the effect of insulin on glucose uptake and metabolism in Drosophila. Here we show that, in contrast to effects seen in mammals, insulin did not alter [(3)H]2-deoxyglucose uptake and in fact decreased glycogen synthesis ( approximately 30%) in embryonic Drosophila Kc cells. Insulin significantly increased ( approximately 1.5-fold) the production of (14)CO(2) from D-[1-(14)C]glucose while the production of (14)CO(2) from D-[6-(14)C]glucose was not altered. Thus, insulin-stimulated glucose oxidation did not occur via increasing Krebs cycle activity but rather by stimulating the pentose phosphate pathway. Indeed, inhibition of the oxidative pentose phosphate pathway by 6-aminonicotinamide abolished the effect of insulin on (14)CO(2) from D-[U-(14)C]glucose. A corresponding increase in lactate production but no change in incorporation of D-[U-(14)C]glucose into total lipids was observed in response to insulin. Glucose metabolism via the pentose phosphate pathway may provide an important source of 5'-phosphate for DNA synthesis and cell replication. This novel observation correlates well with the fact that control of growth and development is the major role of insulin-like peptides in Drosophila. Thus, although intracellular signaling is well conserved, the metabolic effects of insulin are dramatically different between Drosophila and mammals.  相似文献   

10.
In human erythrocytes, in which the fractional turnover rate of glucose 6-phosphate is rather low, menadione increases to almost the same relative extent the oxidation of D-[U-14C]glucose and D-[U-14C]galactose. However, in pancreatic tumoral islet cells (RINm5F line), in which the fractional turnover rate of glucose 6-phosphate is considerably higher, menadione increases the oxidation of D-[1-14C]glucose but not that of D-[1-14C]galactose. These results suggest that alpha-D-glucose 6-phosphate generated from exogenous D-galactose is channeled preferentially into the glycolytic rather than pentose phosphate pathway. Such was no more the case, however, when the RINm5F cells were exposed simultaneously to both D-glucose and D-galactose.  相似文献   

11.
1. In human erythrocytes, alpha-D-[U-14C]glucose is more efficiently oxidized than beta-D-[U-14C]glucose at a low concentration of the hexose (0.1 mM), but not so at higher glucose concentrations. 2. This unexpected situation may be attributable in part to the lower Km of hexokinase for alpha- than beta-D-glucose, this difference in affinity compensating for the higher maximal velocity found with the beta- rather than alpha-anomer. 3. A contributive role for aldose reductase in the anomeric control of D-glucose 6-phosphate circulation in the pentose phosphate pathway should not be ruled out, since aldose reductase inhibitors decrease the production of 14CO2 by erythrocytes exposed to D-[U-14C]glucose. 4. Nevertheless, the essential role of hexokinase in such an anomeric control is supported by the finding that, in the presence of menadione, which augments considerably D-[U-14C]glucose oxidation but fails to affect D-[5-3H]glucose utilization, the anomeric alpha/beta ratio in 14CO2 production from D-[U-14C]glucose follows, at increasing concentrations of the hexose, the same pattern as that found for its phosphorylation.  相似文献   

12.
In theory, the complete oxidation to CO2 of amino acids that are metabolized by conversion into tricarboxylic acid-cycle intermediates may proceed via their conversion into acetyl-CoA. The possible adrenergic modulation of this oxidative pathway was investigated in isolated hemidiaphragms from 40 h-starved rats. Adrenaline (5.5 microM), phenylephrine (0.49 mM) and dibutyryl cyclic AMP (10 microM) inhibited 14CO2 production from 3 mM-[U-14C]valine by 35%, 28% and 19% respectively. At the same time, these agents stimulated glycogen mobilization (measured as a decrease in glycogen content) and glycolysis (measured as lactate release). Adrenaline, phenylephrine and dibutyryl cyclic AMP did not inhibit 14CO2 production from 3 mM-[U-14C]aspartate or 3 mM-[U-14C]glutamate, although, as in the presence of valine, the agents stimulated glycogen mobilization and glycolysis. The rate of proteolysis (measured as tyrosine release in the presence of cycloheximide) was not changed by adrenaline. The data indicate that the adrenergic inhibition of 14CO2 production from [U-14C]valine was not a consequence of radiolabel dilution. Inhibition was apparently specific for branched-chain amino acid metabolism in that the adrenergic agonists also inhibited 14CO2 production from [1-14C]valine, [1-14C]leucine and [U-14C]isoleucine. Since 14CO2 production from the 1-14C-labelled substrates is a specific measure of decarboxylation in the reaction catalysed by the branched-chain 2-oxo acid dehydrogenase complex, it is at this site that the adrenergic agents are concluded to act.  相似文献   

13.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

14.
A method that simultaneously determines Embden-Myerhoff pathway and pentose phosphate pathway (PPP) activities from an incubation with [U-14C]- and [5-3H]glucose is presented. The method relies on the use of unlabeled pyruvate and lactate to dilute out radiolabel entering the tricarboxylic acid cycle. Gluconeogenesis from pyruvate is prevented by the use of an incubation chamber that maintains a CO2 (and bicarbonate) free environment. The method, which includes the contribution by the recycling steps of the PPP, is especially useful when biological material is limited or developmental timing is critical.  相似文献   

15.
1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in vitro was measured and contrasted with the value for the pathway acting in the forward direction. The initial specific rates of the pentose pathway reactions in vitro for the reverse and forward directions are measured. 7. The study which includes carbon balance, time course changes and 14C prediction labelling experiments reports a comprehensive investigation of the mechanism of the pentose pathway acting reversibly.  相似文献   

16.
The activity of the pentose phosphate shunt pathway in brain is thought to be linked to neurotransmitter metabolism, glutathione reduction, and synthetic pathways requiring NADPH. There is currently no method available to assess flux of glucose through the pentose phosphate pathway in localized regions of the brain of conscious animals in vivo. Because metabolites of deoxy[1-14C]glucose are lost from brain when the experimental period of the deoxy[14C]glucose method exceeds 45 min, the possibility was considered that the loss reflected activity of this shunt pathway and that this hexose might be used to assay regional pentose phosphate shunt pathway activity in brain. Decarboxylation of deoxy[1-14C]glucose by brain extracts was detected in vitro, and small quantities of 14C were recovered in the 6-phosphodeoxygluconate fraction when deoxy[14C]glucose metabolites were isolated from freeze-blown brains and separated by HPLC. Local rates of glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose were, however, similar in 20 brain structures at 45, 60, 90, and 120 min after the pulse, indicating that the rate of loss of 14CO2 from deoxy[1-14C]glucose-6-phosphate in normal adult rat brain is too low to permit assay pentose phosphate shunt activity in vivo. Further metabolism of deoxy[1-14]glucose-6-phosphate via this pathway does not interfere during routine use of the deoxyglucose method or explain the progressive decrease in calculated metabolic rate when the experimental period exceeds 45 min.  相似文献   

17.
18.
1. The patterns of 14CO2 evolution from specifically labeled glucose substrates by washed bull, ram, boar, rabbit, dog, rooster and turkey spermatozoa were similar and indicated the Embden-Meyerhof and Kreb's cycle pathways as the major route of energy metabolism. 2. Honey bee spermatozoa metabolized glucose-3,4-[14C], glucose-[U-14C] or fructose-[U-14C], but not glucose-1-[14C], glucose-2-[14C]or glucose-6-[14C], indicating the presence of the glycolytic pathway, but the absence of respiration via the Kreb's cycle. 3. The rate of glycolysis exceeded the rate of respiration in the spermatozoa of all the species studied. 4. A preferential utilization of glucose-1-[14C] over glucose-6-[14C] was evident in some sperm samples, but no consistent indication of pentose cycle metabolism was observed, due to considerable variability between samples within each group. 5. Fructose metabolism was greater than glucose metabolism in the rooster, less in the dog, boar and turkey, and similar in the spermatozoa from the other species examined. 6. Only ram and bull spermatozoa metabolized acetate-1-[14C] to any extent.  相似文献   

19.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1,(3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-14C]alanine,[1-14C]glutamate, and [1,(3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate,[1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

20.
When islets from mice were incubated with 16.7 mM-glucose, previous starvation for 48 h decreased the rate of insulin release by approx. 50% and glucose utilization was decreased by approx. 35%. The maximally extractable activity of glucose 6-phosphate dehydrogenase was diminished by 28% after starvation. The formation of 14CO2 from both [1-14C]glucose was, however, higher than the rate of oxidation of [6-14C]-glucose in islets from both fed and starved mice. The fraction of glucose utilized that was oxidized (specific 14CO2 yield) ranged from one-fifth to one-third and was higher in islets from starved mice with both [1-14C]glucose and [6-14C]glucose as substrate. The contribution of pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose cycle and the turnover of NADPH in this pathway were identical in islets from fed and starved animals. After incubation at 16.7 mM-glucose for 30 min the contents of glucose (6-phosphate and 6-phosphogluconate were both unchanged by starvation. It is concluded that there is no correlation between the decreased sensitivity of the insulin secretory mechanism during starvation and the metabolism of glucose via the pentose cycle, the islet content of glucose 6-phosphate or 6-phosphogluconate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号