首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the molecular requirements for cancer cell internalization of the extracellular cysteine protease inhibitor cystatin C, 12 variants of the protein were produced and used for uptake experiments in MCF-7 cells. Variants with alterations in the cysteine cathepsin binding region ((Δ1–10)-, K5A-, R8G-, (R8G,L9G,V10G)-, (R8G,L9G,V10G,W106G)-, and W106G-cystatin C) were internalized to a very low extent compared with the wild-type inhibitor. Substitutions of N39 in the legumain binding region (N39K- and N39A-cystatin C) decreased the internalization and (R24A,R25A)-cystatin C, with substitutions of charged residues not involved in enzyme inhibition, was not taken up at all. Two variants, W106F- and K75A-cystatin C, showed that the internalization can be positively affected by engineering of the cystatin molecule. Microscopy revealed vesicular co-localization of internalized cystatin C with the lysosomal marker proteins cathepsin D and legumain. Activities of both cysteine cathepsins and legumain, possible target enzymes associated with cancer cell invasion and metastasis, were down-regulated in cell homogenates following cystatin C uptake. A positive effect on regulation of intracellular enzyme activity by a cystatin variant selected from uptake properties was illustrated by incubating cells with W106F-cystatin C. This resulted in more efficient down-regulation of intracellular legumain activity than when cells were incubated with wild-type cystatin C. Uptake experiments in prostate cancer cells corroborated that the cystatin C internalization is generally relevant and confirmed an increased uptake of W106F-cystatin C, in PC3 cells. Thus, intracellular cysteine proteases involved in cancer-promoting processes might be controled by cystatin uptake.  相似文献   

2.
Cystatins are a family of naturally occurring cysteine protease inhibitors, yet the target proteases and biological processes they regulate are poorly understood. Cystatin F is expressed selectively in immune cells and is the only cystatin to be synthesised as an inactive disulphide-linked dimeric precursor. Here, we show that a major target of cystatin F in different immune cell types is the aminopeptidase cathepsin C, which regulates the activation of effector serine proteases in T cells, natural killer cells, neutrophils and mast cells. Surprisingly, recombinant cystatin F was unable to inhibit cathepsin C in vitro even though overexpression of cystatin F suppressed cellular cathepsin C activity. We predicted, using structural models, that an N-terminal processing event would be necessary before cystatin F can engage cathepsin C and we show that the intracellular form of cystatin F indeed has a precise N-terminal truncation that creates a cathepsin C inhibitor. Thus, cystatin F is a latent protease inhibitor itself regulated by proteolysis in the endocytic pathway. By targeting cathepsin C, it may regulate diverse immune cell effector functions.  相似文献   

3.
Cystatins are able to inhibit the tumor-associated activity of intracellular cysteine proteases cathepsins B and L and have been suggested as potential anticancer drugs. We have incorporated chicken cystatin, a model protein inhibitor of cysteine proteases, in poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) to improve its bioavailability and delivery into tumor cells. Cystatin-loaded NPs, 300-350 nm in diameter, were prepared by the double emulsion solvent diffusion method using low energy emulsification to preserve the biological activity of the protein. PLGA NPs and cystatin-loaded PLGA NPs at concentrations higher than 80 microg/ml were cytotoxic towards MCF-10A neoT cells, but not free cystatin at concentrations up to 5 microM. To visualize the uptake of cystatin into living MCF-10A neoT cells, NPs loaded with Alexa Fluor 488-labeled cystatin were added to the culture medium. They rapidly internalized into the cells, whereas the uptake of free-labeled cystatin was very slow. Cystatin, released from the NPs, effectively inhibited cathepsin B activity, as detected by degradation of specific Z-Arg-Arg cresyl violet substrate. In contrast, the same amount of free cystatin showed no inhibition of intracellular cathepsin B. Our results show that PLGA NPs are a useful carrier system for rapid delivery of protein inhibitors into tumor cells, enabling effective inhibition of intracellular proteolysis. The approach can be applied to other protein drugs active against intracellular targets.  相似文献   

4.
Breast cancer cells exhibit excessive proteolysis, which is responsible for extensive extracellular matrix degradation, invasion and metastasis. Besides other proteases, lysosomal cysteine protease cathepsin B has been implicated in these processes and the impairment of its intracellular activity was suggested to reduce harmful proteolysis and hence diminish progression of breast tumors. Here, we present an effective system composed of poly(D,L-lactide-coglycolide) nanoparticles, a specific anti-cytokeratin monoclonal IgG and cystatin, a potent protease inhibitor, that can neutralize the excessive intracellular proteolytic activity as well as invasive potential of breast tumor cells. The delivery system distinguishes between breast and other cells due to the monoclonal antibody specifically recognizing cytokeratines on the membrane of breast tumor cells. Bound nanoparticles are rapidly internalized by means of endocytosis releasing the inhibitor cargo within the lysosomes. This enables intracellular cathepsin B proteolytic activity to be inhibited, reducing the invasive and metastatic potential of tumor cells without affecting proteolytic functions in normal cells and processes. This approach may be applied for treatment of breast and other tumors in which intracellular proteolytic activity is a part of the process of malignant progression.  相似文献   

5.
Cystatin F is a cysteine protease inhibitor that is selectively expressed in immune cells and unlike other cystatin family members is targeted to a significant extent to intracellular compartments. Initially made as an inactive glycosylated disulfide-linked dimer, cystatin F is converted to an active monomer by proteolytic cleavage following transport to the endosomal/lysosomal system. This active form of cystatin F targets cathepsin C/DPPI and probably other cathepsins in immune cells. We show that efficient targeting of cystatin F to the endocytic pathway is dependent not on its unique dimeric conformation but rather on its oligosaccharide chains. We demonstrate the unusual addition of N -linked sugars to an Asn-X-Cys motif in cystatin F and provide evidence that the mannose 6-phosphate sorting machinery is used to divert cystatin F from the secretory pathway and to mediate its uptake from extracellular pools. These studies identify a function for the oligosaccharides on cystatin F and raise the possibility that cystatin F might regulate proteases in trans by secretion in an inactive form by one cell and subsequent internalization and activation by another cell.  相似文献   

6.
After attachment to receptors, reovirus virions are internalized by endocytosis and exposed to acid-dependent proteases that catalyze viral disassembly. Previous studies using the cysteine protease inhibitor E64 and a mutant cell line that does not support reovirus disassembly suggest a requirement for specific endocytic proteases in reovirus entry. This study identifies the endocytic proteases that mediate reovirus disassembly in murine fibroblast cells. Infection of both L929 cells treated with the cathepsin L inhibitor Z-Phe-Tyr(t-Bu)-diazomethyl ketone and cathepsin L-deficient mouse embryo fibroblasts resulted in inefficient proteolytic disassembly of viral outer-capsid proteins and decreased viral yields. In contrast, both L929 cells treated with the cathepsin B inhibitor CA-074Me and cathepsin B-deficient mouse embryo fibroblasts support reovirus disassembly and growth. However, removal of both cathepsin B and cathepsin L activity completely abrogates disassembly and growth of reovirus. Concordantly, cathepsin L mediates reovirus disassembly more efficiently than cathepsin B in vitro. These results demonstrate that either cathepsin L or cathepsin B is required for reovirus entry into murine fibroblasts and indicate that cathepsin L is the primary mediator of reovirus disassembly. Moreover, these findings suggest that specific endocytic proteases can determine host cell susceptibility to infection by intracellular pathogens.  相似文献   

7.
8.
Testican-1, a secreted proteoglycan enriched in brain, has a single thyropin domain that is highly homologous to domains previously shown to inhibit cysteine proteases. We demonstrate that purified recombinant human testican-1 is a strong competitive inhibitor of the lysosomal cysteine protease, cathepsin L, with a Ki of 0.7 nM, but it does not inhibit the structurally related lysosomal cysteine protease cathepsin B. Testican-1 inhibition of cathepsin L is independent of its chondroitin sulfate chains and is effective at both pH 5.5 and 7.2. At neutral pH, testican-1 also stabilizes cathepsin L, slowing pH-induced denaturation and allowing the protease to remain active longer, although the rate of proteolysis is reduced. These data indicate that testican-1 is capable of modulating cathepsin L activity both in intracellular vesicles and in the extracellular milieu.  相似文献   

9.
Cathepsin C is a cysteine protease required for the activation of several pro-inflammatory serine proteases and, as such, is of interest as a therapeutic target. In cathepsin C-deficient mice and humans, the N-terminal processing and activation of neutrophil elastase, cathepsin G, and proteinase-3 is abolished and is accompanied by a reduction of protein levels. Pharmacologically, the consequence of cathepsin C inhibition on the activation of these serine proteases has not been described, due to the lack of stable and non-toxic inhibitors and the absence of appropriate experimental cell systems. Using novel reversible peptide nitrile inhibitors of cathepsin C, and cell-based assays with U937 and EcoM-G cells, we determined the effects of pharmacological inhibition of cathepsin C on serine protease activity. We show that indirect and complete inhibition of neutrophil elastase, cathepsin G, and proteinase-3 is achievable in intact cells with selective and non-cytotoxic cathepsin C inhibitors, at concentrations approximately 10-fold higher than those required to inhibit purified cathepsin C. The concentration of inhibitor needed to block processing of these three serine proteases was similar, regardless of the cell system used. Importantly, cathepsin C inhibition must be sustained to maintain serine protease inhibition, because removal of the reversible inhibitors resulted in the activation of pro-enzymes in intact cells. These findings demonstrate that near complete inhibition of multiple serine proteases can be achieved with cathepsin C inhibitors and that cathepsin C inhibition represents a viable but challenging approach for the treatment of neutrophil-based inflammatory diseases.  相似文献   

10.

Background

Protein C inhibitor (PCI) is a plasma serine protease inhibitor (serpin) that regulates several serine proteases in coagulation including thrombin and activated protein C. However, the physiological role of PCI remains under investigation. The cysteine protease, cathepsin L, has a role in many physiological processes including cardiovascular diseases, blood vessel remodeling, and cancer.

Methods and results

We found that PCI inhibits cathepsin L with an inhibition rate (k2) of 3.0 × 105 M1 s1. Whereas, the PCI P1 mutant (R354A) inhibits cathepsin L at rates similar to wild-type PCI, mutating the P2 residue results in a slight decrease in the rate of inhibition. We then assessed the effect of PCI and cathepsin L on the migration of human breast cancer (MDA-MB-231) cells. Cathepsin L was expressed in both the cell lysates and conditioned media of MDA-MB-231 cells. Wound-induced and transwell migration of MDA-MB-231 cells was inhibited by exogenously administered wtPCI and PCI P1 but not PCI P14 mutant. In addition, migration of MDA-MB-231 cells expressing wtPCI was significantly decreased compared to non-expressing MDA-MB-231 cells or MDA-MB-231 cells expressing the PCI P14 mutant. Downregulation of cathepsin L by either a specific cathepsin L inhibitor or siRNA technology also resulted in a decrease in the migration of MDA-MB-231 cells.

Conclusions

Overall, our data show that PCI regulates tumor cell migration partly by inhibiting cathepsin L.

General significance

Consequently, inhibiting cathepsin L by serpins like PCI may be a new pathway of regulating hemostasis, cardiovascular and metastatic diseases.  相似文献   

11.
Biochemical properties and regulation of cathepsin K activity   总被引:1,自引:0,他引:1  
Cysteine cathepsins (11 in humans) are mostly located in the acidic compartments of cells. They have been known for decades to be involved in intracellular protein degradation as housekeeping proteases. However, the discovery of new cathepsins, including cathepsins K, V and F, has provided strong evidence that they also participate in specific biological events. This review focuses on the current knowledge of cathepsin K, the major bone cysteine protease, which is a drug target of clinical interest. Nevertheless, we will not discuss recent developments in cathepsin K inhibitor design since they have been extensively detailed elsewhere. We will cover features of cathepsin K structure, cellular and tissue distribution, substrate specificity, and regulation (pH, propeptide, glycosaminoglycans, oxidants), and its putative roles in physiological or pathophysiological processes. Finally, we will review the kinetic data of its inhibition by natural endogenous inhibitors (stefin B, cystatin C, H- and L-kininogens).  相似文献   

12.
To define the cellular processing of human cystatin C as well as to lay the groundwork for investigating its contribution to Icelandic Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA-I), we have characterized the trafficking, secretion, and extracellular fate of human cystatin C in transfected Chinese hamster ovary (CHO) cells. It is constitutively secreted with an intracellular half-life of 72 min. Gel filtration of cell lysates revealed the presence of three cystatin C immunoreactive species; an 11 kDa species corresponding to monomeric cystatin C, a 33 kDa complex that is most likely dimeric cystatin C and immunoreactive material, ≥70 kDa, whose composition is unknown. Intracellular monomeric cystatin C is functionally active as a cysteine protease inhibitor, while the dimer is not. Medium from the transfected CHO cells contained only active monomeric cystatin C indicating that the cystatin C dimer, formed during intracellular trafficking, is converted to monomer at or before secretion. Cells in which exit from the endoplasmic reticulum (ER) was blocked with brefeldin A contained the 33 kDa species, indicating that cystatin C dimerization occurs in the ER. After removal of brefeldin A, there was a large increase in intracellular monomer suggesting that dimer dissociation occurs later in the secretion pathway, after exiting the ER but prior to release from the cell. Extracellular monomeric cystatin C was found to be internalized into lysosomes where it again dimerized, presumably as a consequence of the low pH of late endosome/lysosomes. As a dimer, cystatin C would be prevented from inhibiting the lysosomal cysteine proteases. These results reveal a novel mechanism, transient dimerization, by which cystatin C is inactivated during the early part of its trafficking through the secretory pathway and then reactivated prior to secretion. Similarly, its uptake by the cell also leads to its redimerization in the lysosomal pathway. J. Cell. Physiol. 173:423–432, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The lysosomal cysteine protease cathepsin B is implicated in degradation of extracellular matrix (ECM), a crucial step in a variety of physiological and pathological processes, including tumor dissemination and angiogenesis. In this study, we analyzed the contribution of extracellular and intracellular cathepsin B activity on the formation of capillary-like tubular structures by human umbilical vein endothelial cells (HUVECs) grown on Matrigel matrix, using general and specific cysteine protease inhibitors. We demonstrated, by confocal assay using quenched fluorescent protein substrate DQ-collagen IV, that endothelial cells degrade ECM both intracellularly and pericellularly. Intracellular cathepsin B activity detected by degradation of Z-Arg-Arg cresyl violet substrate was co-localized with the products of DQ-collagen IV degradation in the perinuclear region and in the capillary-like tubular structures. Treatment of cells with membrane-permeable CA-074 Me effectively abolished intracellular cathepsin B activity, and resulted in reduced tube length (32.3+/-9.4% at 10 microM), total tubule area (49.6+/-12.4% at 10 microM), and the number of branch points of tubules (47.5+/-7.7% at 10 microM) in a dose-dependent manner. In contrast, CA-074 (0.1-10 microM), a membrane-impermeable cathepsin B specific inhibitor, general cysteine protease inhibitors chicken cystatin (5 microM) and E-64 (10 microM), and the metalloprotease inhibitor Minocycline (10 microM) showed no significant inhibitory effect in our angiogenesis model. These results show that, besides multiple regulatory molecules, intracellular cathepsin B also contributes to the neovascularization process and should be considered as a potential therapeutic target.  相似文献   

14.
Legumain, an asparaginyl endopeptidase, is up-regulated in tumour and tumour-associated cells, and is linked to the processing of cathepsin B, L, and proMMP-2. Although legumain is mainly localized to the endosomal/lysosomal compartments, legumain has been reported to be localized extracellularly in the tumour microenvironment and associated with extracellular matrix and cell surfaces. The most potent endogenous inhibitor of legumain is cystatin E/M, which is a secreted protein synthesised with an export signal. Therefore, we investigated the cellular interplay between legumain and cystatin E/M. As a cell model, HEK293 cells were transfected with legumain cDNA, cystatin E/M cDNA, or both, and over-expressing monoclonal cell lines were selected (termed M38L, M4C, and M3CL, respectively). Secretion of prolegumain from M38L cells was inhibited by treatment with brefeldin A, whereas bafilomycin A1 enhanced the secretion. Cellular processing of prolegumain to the 46 and 36 kDa enzymatically active forms was reduced by treatment with either substance alone. M38L cells showed increased, but M4C cells decreased, cathepsin L processing suggesting a crucial involvement of legumain activity. Furthermore, we observed internalization of cystatin E/M and subsequently decreased intracellular legumain activity. Also, prolegumain was shown to internalize followed by increased intracellular legumain processing and activation. In addition, in M4C cells incomplete processing of the internalized prolegumain was observed, as well as nuclear localized cystatin E/M. Furthermore, auto-activation of secreted prolegumain was inhibited by cystatin E/M, which for the first time shows a regulatory role of cystatin E/M in controlling both intra- and extracellular legumain activity.  相似文献   

15.
Cathepsins are powerful proteases, once referred to as the lysosomal cysteine proteases, that have been implicated in breast cancer invasion and metastasis, but pharmaceutical inhibitors have suffered failures in clinical trials due to adverse side effects. Scientific advancement from lysosomotropic to cell impermeable cathepsin inhibitors have improved efficacy in treating disease, but off-target effects have still been problematic, motivating a need to better understand cellular feedback and responses to treatment with cathepsin inhibitors. To address this need, we investigated effects of E-64 and cystatin C, two broad spectrum cathepsin inhibitors, on cathepsin levels intra- and extracellularly in MDA-MB-231 breast cancer cells. Cathepsins S and L had opposing responses to both E-64 and cystatin C inhibitor treatments with paradoxically elevated amounts of active cathepsin S, but decreased amounts of active cathepsin L, as determined by multiplex cathepsin zymography. This indicated cellular feedback to selectively sustain the amounts of active cathepsin S even in the presence of inhibitors with subnanomolar inhibitory constant values. These differences were identified in cellular locations of cathepsins L and S, trafficking for secretion, co-localization with endocytosed inhibitors, and longer protein turnover time for cathepsin S compared to cathepsin L. Together, this work demonstrates that previously underappreciated cellular compensation and compartmentalization mechanisms may sustain elevated amounts of some active cathepsins while diminishing others after inhibitor treatment. This can confound predictions based solely on inhibitor kinetics, and must be better understood to effectively deploy therapies and dosing strategies that target cathepsins to prevent cancer progression.  相似文献   

16.
The lysosomal cysteine proteases cathepsin B and L play important roles in tumor cell invasion. An imbalance between these cathepsins and their endogenous inhibitors, the cystatins, has been associated with development of the metastatic phenotype. Accordingly, many studies have indicated potential use of cystatins in therapeutic approaches. We report a novel cystatin from sugarcane (Saccharum officinarum), CaneCPI-4, with strong inhibitory activity against cathepsins B (K(i) = 0.83 nM) and L (K(i) = 0.021 nM). The invasive ability of MDA-MB-231 human breast cancer cells expressing CaneCPI-4 was only slightly decreased. In contrast, addition of low, non-toxic concentrations of recombinant His-tagged CaneCPI-4 significantly reduced invasion through a Matrigel matrix. Immunoblot analyses failed to detect the recombinant protein inside cells, indicating that the cystatin was not internalized by endocytosis, but exerted its anti-invasive effect mainly through inhibition of extracellular cathepsins. Our findings open the possibility of considering phytocystatins for anti-cancer strategies.  相似文献   

17.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

18.
A balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell. Accordingly, we present an investigation into the effect of a DNA-rich environment on the interaction between model serpins (MENT and SCCA-1), cysteine proteases (human cathepsin V and human cathepsin L), and cystatin A. DNA was indeed found to accelerate the rate at which MENT inhibited cathepsin V, a human orthologue of mammalian cathepsin L, up to 50-fold, but unexpectedly this effect was primarily effected via the protease and secondarily by the recruitment of the DNA as a "template" onto which cathepsin V and MENT are bound. Notably, the protease-mediated effect was found to correspond both with an altered substrate turnover and a conformational change within the protease. Consistent with this, cystatin inhibition, which relies on occlusion of the active site rather than the substrate-like behavior of serpins, was unaltered by DNA. This represents the first example of modulation of serpin inhibition of cysteine proteases by a co-factor and reveals a mechanism for differential regulation of cathepsin proteolytic activity in a DNA-rich environment.  相似文献   

19.
Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S-transferase-cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.  相似文献   

20.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号