首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finnigan GC  Ryan M  Stevens TH 《Genetics》2011,187(3):771-783
The function of the vacuolar H(+)-ATPase (V-ATPase) enzyme complex is to acidify organelles; this process is critical for a variety of cellular processes and has implications in human disease. There are five accessory proteins that assist in assembly of the membrane portion of the complex, the V(0) domain. To identify additional elements that affect V-ATPase assembly, trafficking, or enzyme activity, we performed a genome-wide enhancer screen in the budding yeast Saccharomyces cerevisiae with two mutant assembly factor alleles, VMA21 with a dysfunctional ER retrieval motif (vma21QQ) and vma21QQ in combination with voa1Δ, a nonessential assembly factor. These alleles serve as sensitized genetic backgrounds that have reduced V-ATPase enzyme activity. Genes were identified from a variety of cellular pathways including a large number of trafficking-related components; we characterized two redundant gene pairs, HPH1/HPH2 and ORM1/ORM2. Both sets demonstrated synthetic growth defects in combination with the vma21QQ allele. A loss of either the HPH or ORM gene pairs alone did not result in a decrease in vacuolar acidification or defects in V-ATPase assembly. While the Hph proteins are not required for V-ATPase function, Orm1p and Orm2p are required for full V-ATPase enzyme function. Consistent with the documented role of the Orm proteins in sphingolipid regulation, we have found that inhibition of sphingolipid synthesis alleviates Orm-related growth defects.  相似文献   

2.
The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.  相似文献   

3.
CD39-like ectoapyrases are involved in protein and lipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. By using a two-hybrid screen, we found that an activator subunit (Vma13p) of yeast vacuolar H(+)-ATPase (V-ATPase) binds to the cytoplasmic domain of Ynd1p, a yeast ectoapyrase. Interaction of Ynd1p with Vma13p was demonstrated by direct binding and co-immunoprecipitation. Surprisingly, the membrane-bound ADPase activity of Ynd1p in a vma13Delta mutant was drastically increased compared with that of Ynd1p in VMA13 cells. A similar increase in the apyrase activity of Ynd1p was found in a vma1Delta mutant, in which the catalytic subunit A of V-ATPase is missing, and the membrane peripheral subunits including Vma13p are dissociated from the membranes. However, the E286Q mutant of VMA1, which assembles inactive V-ATPase complex including Vma13p in the membrane, retained wild type levels of Ynd1p activity, demonstrating that the presence of Vma13p rather than the function of V-ATPase in the membrane represses Ynd1p activity. These results suggest that association of Vma13p with the cytoplasmic domain of Ynd1p regulates its apyrase activity in the Golgi lumen.  相似文献   

4.
The ability of a vacuolar H(+)-ATPase (V-ATPase) subunit homolog (subunit A) from plants to rescue the vma mutant phenotype of yeast was investigated as a first step towards investigating the structure and function of plant subunits in molecular detail. Heterologous expression of cotton cDNAs encoding near-identical isoforms of subunit A in mutant vma1 delta yeast cells successfully rescued the mutant vma phenotype, indicating that subunit A of plants and yeast have retained elements essential to V-ATPases during the course of evolution. Although vacuoles become acidified, the plant-yeast hybrid holoenzyme only partially restored V-ATPase activity (approximately 60%) in mutant yeast cells. Domain substitution of divergent N- or C-termini only slightly enhanced V-ATPase activity, whereas swapping both domains acted synergistically, increasing coupled ATP hydrolysis and proton translocation by approximately 22% relative to the native plant subunit. Immunoblot analysis indicated that similar amounts of yeast, plant or plant-yeast chimeric subunits are membrane-bound. These results suggest that subunit A terminal domains contain structural information that impact V-ATPase structure and function.  相似文献   

5.
Yeast mutants lacking vacuolar proton-translocating ATPase (V-ATPase) subunits (vma mutants) were sensitive to several different oxidants in a recent genomic screen (Thorpe, G. W., Fong, C. S., Alic, N., Higgins, V. J., and Dawes, I. W. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 6564-6569). We confirmed that mutants lacking a V(1) subunit (vma2Delta), V(o) subunit, or either of the two V(o) a subunit isoforms are acutely sensitive to H(2)O(2) and more sensitive to menadione and diamide than wild-type cells. The vma2Delta mutant contains elevated levels of reactive oxygen species and high levels of oxidative protein damage even in the absence of an applied oxidant, suggesting an endogenous source of oxidative stress. vma2Delta mutants lacking mitochondrial DNA showed neither improved growth nor decreased sensitivity to peroxide, excluding respiration as the major source of the endogenous reactive oxygen species in the mutant. Double mutants lacking both VMA2 and components of the major cytosolic defense systems exhibited synthetic sensitivity to H(2)O(2). Microarray analysis comparing wild-type and vma2Delta mutant cells grown at pH 5, permissive conditions for the vma2Delta mutant, indicated high level up-regulation of several iron uptake and metabolism genes that are part of the Aft1/Aft2 regulon. TSA2, which encodes an isoform of the cytosolic thioredoxin peroxidase, was strongly induced, but other oxidative stress defense systems were not induced. The results indicate that V-ATPase activity helps to protect cells from endogenous oxidative stress.  相似文献   

6.
Lead is an important environmental pollutant. The role of vacuole, in Pb detoxification, was studied using a vacuolar protein sorting mutant strain (vps16Δ), belonging to class C mutants. Cells disrupted in VPS16 gene, did not display a detectable vacuolar-like structure. Based on the loss of cell proliferation capacity, it was found that cells from vps16Δ mutant exhibited a hypersensitivity to Pb-induced toxicity, compared to wild type (WT) strain. The function of vacuolar H+-ATPase (V-ATPase), in Pb detoxification, was evaluated using mutants with structurally normal vacuoles but defective in subunits of catalytic (vma1Δ or vma2Δ) or membrane domain (vph1Δ or vma3Δ) of V-ATPase. All mutants tested, lacking a functional V-ATPase, displayed an increased susceptibility to Pb, comparatively to cells from WT strain. Modification of vacuolar morphology, in Pb-exposed cells, was visualized using a Vma2p-GFP strain. The treatment of yeast cells with Pb originated the fusion of the medium size vacuolar lobes into one enlarged vacuole. In conclusion, it was found that vacuole plays an important role in the detoxification of Pb in Saccharomyces cerevisiae; in addition, a functional V-ATPase was required for Pb compartmentalization.  相似文献   

7.
Mutants of Saccharomyces cerevisiae that lack vacuolar proton-translocating ATPase (V-ATPase) activity show a well-defined set of Vma (stands for vacuolar membrane ATPase activity) phenotypes that include pH-conditional growth, increased calcium sensitivity, and the inability to grow on nonfermentable carbon sources. By screening based on these phenotypes and the inability of vma mutants to accumulate the lysosomotropic dye quinacrine in their vacuoles, five new vma complementation groups (vma41 to vma45) were identified. The VMA45 gene was cloned by complementation of the pH-conditional growth of the vma45-1 mutant strain and shown to be allelic to the previously characterized KEX2 gene, which encodes a serine endoprotease localized to the late Golgi compartment. Both vma45-1 mutants and kex2 null mutants exhibit the full range of Vma growth phenotypes and show no vacuolar accumulation of quinacrine, indicating loss of vacuolar acidification in vivo. However, immunoprecipitation of the V-ATPase from both strains under nondenaturing conditions revealed no defect in assembly of the enzyme, vacuolar vesicles isolated from a kex2 null mutant showed levels of V-ATPase activity and proton pumping comparable to those of wild-type cells, and the V-ATPase complex purified from kex2 null mutants was structurally indistinguishable from that of wild-type cells. The results suggest that kex2 mutations exert an inhibitory effect on the V-ATPase in the intact cell but that the ATPase is present in the mutant strains in a fully assembled state, potentially capable of full enzymatic activity. This is the first time a mutation of this type has been identified.  相似文献   

8.
V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)]. Little is known about the relative contribution of these two proteins to the acidification of intracellular compartments. In the present study, we show that the expression of a chimaeric derivative of the Arabidopsis thaliana H+-PPase AVP1, which is preferentially targeted to internal membranes of yeast, alleviates the phenotypes associated with V-ATPase deficiency. Phenotypic complementation was achieved both with a yeast strain with its V-ATPase specifically inhibited by bafilomycin A1 and with a vma1-null mutant lacking a catalytic V-ATPase subunit. Cell staining with vital fluorescent dyes showed that AVP1 recovered vacuole acidification and normalized the endocytic pathway of the vma mutant. Biochemical and immunochemical studies further demonstrated that a significant fraction of heterologous H+-PPase is located at the vacuolar membrane. These results raise the question of the occurrence of distinct proton pumps in certain single-membrane organelles, such as plant vacuoles, by proving yeast V-ATPase activity dispensability and the capability of H+-PPase to generate, by itself, physiologically suitable internal pH gradients. Also, they suggest new ways of engineering macrolide drug tolerance and outline an experimental system for testing alternative roles for fungal and animal V-ATPases, other than the mere acidification of subcellular organelles.  相似文献   

9.
The yeast vacuolar proton-translocating ATPase (V-ATPase) is a multisubunit complex comprised of peripheral membrane subunits involved in ATP hydrolysis and integral membrane subunits involved in proton pumping. The yeast vma21 mutant was isolated from a screen to identify mutants defective in V-ATPase function. vma21 mutants fail to assemble the V-ATPase complex onto the vacuolar membrane: peripheral subunits accumulate in the cytosol and the 100-kDa integral membrane subunit is rapidly degraded. The product of the VMA21 gene (Vma21p) is an 8.5-kDa integral membrane protein that is not a subunit of the purified V-ATPase complex but instead resides in the endoplasmic reticulum. Vma21p contains a dilysine motif at the carboxy terminus, and mutation of these lysine residues abolishes retention in the endoplasmic reticulum and results in delivery of Vma21p to the vacuole, the default compartment for yeast membrane proteins. Our findings suggest that Vma21p is required for assembly of the integral membrane sector of the V-ATPase in the endoplasmic reticulum and that the unassembled 100-kDa integral membrane subunit present in delta vma21 cells is rapidly degraded by nonvacuolar proteases.  相似文献   

10.
Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance.  相似文献   

11.
The vacuole is the major site of intracellular Ca(2+) storage in yeast and functions to maintain cytosolic Ca(2+) levels within a narrow physiological range via a Ca(2+) pump (Pmc1p) and a H(+)/Ca(2+) antiporter (Vcx1p) driven by the vacuolar H(+)-ATPase (V-ATPase). We examined the function of the V-ATPase in cytosolic Ca(2+) homeostasis by comparing responses to a brief Ca(2+) challenge of a V-ATPase mutant (vma2Delta) and wild-type cells treated with the V-ATPase inhibitor concanamycin A. The kinetics of the Ca(2+) response were determined using transgenic aequorin as an in vivo cytosolic Ca(2+) reporter system. In wild-type cells, the V-ATPase-driven Vcx1p was chiefly responsible for restoring cytosolic Ca(2+) concentrations after a brief pulse. In cells lacking V-ATPase activity, brief exposure to elevated Ca(2+) compromised viability, even when there was little change in the final cytosolic Ca(2+) concentration. vma2Delta cells were more efficient at restoring cytosolic [Ca(2+)] after a pulse than concanamycin-treated wild-type cells, suggesting long term loss of V-ATPase triggers compensatory mechanisms. This compensation was dependent on calcineurin, and was mediated primarily by Pmc1p.  相似文献   

12.
Histoplasma capsulatum (Hc) is a facultative intracellular fungus that modulates the intraphagosomal environment to survive within macrophages (Mphi). In the present study, we sought to quantify the intraphagosomal pH under conditions in which Hc yeasts replicated or were killed. Human Mphi that had ingested both viable and heat-killed or fixed yeasts maintained an intraphagosomal pH of approximately 6.4-6.5 over a period of several hours. These results were obtained using a fluorescent ratio technique and by electron microscopy using the 3-(2,4-dinitroanilo)-3'-amino-N-methyldipropylamine reagent. Mphi that had ingested Saccharomyces cerevisae, a nonpathogenic yeast that is rapidly killed and degraded by Mphi, also maintained an intraphagosomal pH of approximately 6.5 over a period of several hours. Stimulation of human Mphi fungicidal activity by coculture with chloroquine or by adherence to type 1 collagen matrices was not reversed by bafilomycin, an inhibitor of the vacuolar ATPase. Human Mphi cultured in the presence of bafilomycin also completely degraded heat-killed Hc yeasts, whereas mouse peritoneal Mphi digestion of yeasts was completely reversed in the presence of bafilomycin. However, bafilomycin did not inhibit mouse Mphi fungistatic activity induced by IFN-gamma. Thus, human Mphi do not require phagosomal acidification to kill and degrade Hc yeasts, whereas mouse Mphi do require acidification for fungicidal but not fungistatic activity.  相似文献   

13.
VMA3, a structure gene of the vacuolar membrane H(+)-ATPase subunit c of Saccharomyces cerevisiae, has been cloned and characterized. The VMA3 gene encodes a hydrophobic polypeptide with 160 amino acids as reported previously by Nelson and Nelson (Nelson, H., and Nelson, N. (1989) FEBS Lett. 247, 147-153). Peptide sequence analysis indicated that the VMA3 gene product lacks N-terminal methionine and does not have a cleavable signal sequence. To investigate functional and structural roles of the subunit c for vacuolar acidification and protein transport to the vacuole, haploid mutants with the disrupted VMA3 gene were constructed. The vma3 mutants can grow in nutrient-enriched medium, but they have completely lost the vacuolar membrane H(+)-ATPase activity and the ability of vacuolar acidification in vivo. The subunit c was found to be indispensable for the assembly of subunits a and b of the H(+)-ATPase complex. The disruption of the VMA3 gene causes yeast cells with considerable lesions in vacuolar biogenesis and protein transport to the vacuole and inhibits endocytosis of lucifer yellow CH completely.  相似文献   

14.
Candida albicans vacuoles are central to many critical biological processes, including filamentation and in vivo virulence. The V-ATPase proton pump is a multisubunit complex responsible for organellar acidification and is essential for vacuolar biogenesis and function. To study the function of the V1B subunit of C. albicans V-ATPase, we constructed a tetracycline-regulatable VMA2 mutant, tetR-VMA2. Inhibition of VMA2 expression resulted in the inability to grow at alkaline pH and altered resistance to calcium, cold temperature, antifungal drugs, and growth on nonfermentable carbon sources. Furthermore, V-ATPase was unable to fully assemble at the vacuolar membrane and was impaired in proton transport and ATPase-specific activity. VMA2 repression led to vacuolar alkalinization in addition to abnormal vacuolar morphology and biogenesis. Key virulence-related traits, including filamentation and secretion of degradative enzymes, were markedly inhibited. These results are consistent with previous studies of C. albicans V-ATPase; however, differential contributions of the V-ATPase Vo and V1 subunits to filamentation and secretion are observed. We also make the novel observation that inhibition of C. albicans V-ATPase results in increased susceptibility to osmotic stress. Notably, V-ATPase inhibition under conditions of nitrogen starvation results in defects in autophagy. Lastly, we show the first evidence that V-ATPase contributes to virulence in an acidic in vivo system by demonstrating that the tetR-VMA2 mutant is avirulent in a Caenorhabditis elegans infection model. This study illustrates the fundamental requirement of V-ATPase for numerous key virulence-related traits in C. albicans and demonstrates that the contribution of V-ATPase to virulence is independent of host pH.  相似文献   

15.
The yeast Saccharomyces cerevisiae accumulates the high levels of inorganic polyphosphates (polyPs) performing in the cells numerous functions, including phosphate and energy storage. The effects of vacuolar membrane ATPase (V-ATPase) dysfunction were studied on polyP accumulation under short-term cultivation in the Pi–excess media after Pi starvation. The addition of bafilomycin A1, a specific inhibitor of V-ATPase, to the medium with glucose resulted in strong inhibition of the synthesis of long-chain polyP and in substantial suppression of short-chain polyP. The addition of bafilomycin to the medium with ethanol resulted in decreased accumulation of high-molecular polyP, while the accumulation of low-molecular polyP was not affected. The levels of polyP synthesis in the mutant strain with a deletion in the vma2 gene encoding a V-ATPase subunit were significantly lower than in the parent strain in the media with glucose and with ethanol. The synthesis of the longest chain polyP was not observed in the mutant cells. The synthesis of only the low-polymer acid-soluble polyP fraction occurred in the cells of the mutant strain. However, the level of polyP1 was nearly tenfold lower than compared to the cells of the parent strain. Both bafilomycin A1 and the mutation in vacuolar ATPase subunit vma2 lead to a considerable decrease of cellular polyP accumulation. Thus, the defects in ΔμH+ formation on the vacuolar membrane resulted in the decrease of polyP biosynthesis in S. cerevisiae.  相似文献   

16.
A single gene, VMA1, encodes the 69-kDa subunit of the vacuolar membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. We have proposed that the subunit is synthesized as a precursor of 120 kDa (1,071 amino acids) and then converted to the 69-kDa form by an unusual processing reaction, which removes the internal domain of 454 amino acids (residues 284-737) and joins the N- and C-terminal domains. Cysteine to serine mutations at residues 284 and 738, the residues that bracket the internal domain, were introduced into the VMA1 gene by site-directed mutagenesis, and the mutant genes were expressed in a null vma1 mutant. Cells harboring either of the mutant vma1 genes accumulate nonfunctional fragments of the subunit. The mutation of Cys-284 inhibited the cleavage of the N-terminal junction site. Cys-738-->Ser mutation appeared to block the processing at both junction sites although the mutant gene yielded a small fraction of the functional 69-kDa subunit.  相似文献   

17.
A gene, VMA11, is indispensable for expression of the vacuolar membrane H(+)-ATPase activity in the yeast Saccharomyces cerevisiae (Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991) J. Biol. Chem. 266, 13971-13977). The VMA11 gene was isolated from a yeast genomic DNA library by complementation of the vma11 mutation. The nucleotide sequence of the gene predicts a hydrophobic proteolipid of 164 amino acids with a calculated molecular mass of 17,037 daltons. The deduced amino acid sequence shows 56.7% identity, and significant coincidence in amino acid composition with the 16-kDa subunit c (a VMA3 gene product) of the yeast vacuolar membrane H(+)-ATPase. VMA11 and VMA3 on a multicopy plasmid did not suppress the vma3 and vma11 mutation, respectively, suggesting functional independence of the two gene products. Biochemical detection of the VMA11 gene product was unsuccessful, but vacuoles in the VMA11-disrupted cells were not assembled with either subunit c or subunits a and b of the H(+)-ATPase, resulting in defects of the activity and in vivo vacuolar acidification.  相似文献   

18.
Histoplasma capsulatum (Hc) is a pathogenic fungus that replicates in macrophages (Mphi). In dendritic cells (DC), Hc is killed and fungal Ags are processed and presented to T cells. DC recognize Hc yeasts via the VLA-5 receptor, whereas Mphi recognize yeasts via CD18. To identify ligand(s) on Hc recognized by DC, VLA-5 was used to probe a Far Western blot of a yeast freeze/thaw extract (F/TE) that inhibited Hc binding to DC. VLA-5 recognized a 20-kDa protein, identified as cyclophilin A (CypA), and CypA was present on the surface of Hc yeasts. rCypA inhibited the attachment of Hc to DC, but not to Mphi. Silencing of Hc CypA by RNA interference reduced yeast binding to DC by 65-85%, but had no effect on binding to Mphi. However, F/TE from CypA-silenced yeasts still inhibited binding of wild-type Hc to DC, and F/TE from wild-type yeasts depleted of CypA also inhibited yeast binding to DC. rCypA did not further inhibit the binding of CypA-silenced yeasts to DC. Polystyrene beads coated with rCypA or fibronectin bound to DC and Mphi and to Chinese hamster ovary cells transfected with VLA-5. Binding of rCypA-coated beads, but not fibronectin-coated beads, was inhibited by rCypA. These data demonstrate that CypA serves as a ligand for DC VLA-5, that binding of CypA to VLA-5 is at a site different from FN, and that there is at least one other ligand on the surface of Hc yeasts that mediates binding of Hc to DC.  相似文献   

19.
The V-ATPase of Saccharomyces cerevisiae is an ATP-dependent proton pump responsible for acidification of the vacuole and other internal compartments including the whole secretory pathway. We have studied the behavior of several glycoprotein processing reactions occurring in different Golgi compartments of representative vmaΔ mutants. We found that outer chain initiation is not altered in the mutants while mannosylphosphate transfer, α(1,3)-linked mannoses addition, and α factor maturation seem to be affected. The results suggest a gradation in the dependence of Golgi functions on V-ATPase activity, from early Golgi (unaffected) to late Golgi (significantly reduced). These findings are in agreement with the internal pH of Golgi cisternae measured in mammalian cells, which is more acidic in the late region. The mutant defects can be partially restored by buffering the external medium to pH 6.0, which supports the existence of a mechanism that, in the absence of a functional V-ATPase, could contribute to pH regulation at least in the late Golgi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号