首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote Delta endocytosis and signaling activity. Although orthologs of both Neuralized and Mind bomb are found in most metazoan organisms, their relative contributions to Notch signaling in any single organism have not yet been assessed. We show here that a Drosophila ortholog of Mind bomb (D-mib) is a positive component of Notch signaling that is required for multiple Neuralized-independent, Notch-dependent developmental processes. Furthermore, we show that D-mib associates physically and functionally with both Serrate and Delta. We find that D-mib uses its ubiquitin ligase activity to promote DSL ligand activity, an activity that is correlated with its ability to induce the endocytosis and degradation of both Delta and Serrate (see also Le Borgne et al., 2005). We further demonstrate that D-mib can functionally replace Neuralized in multiple cell fate decisions that absolutely require endogenous Neuralized, a testament to the highly similar activities of these two unrelated ubiquitin ligases in regulating Notch signaling. We conclude that ubiquitination of Delta and Serrate by Neuralized and D-mib is an obligate feature of DSL ligand activation throughout Drosophila development.  相似文献   

4.
5.
The Caenorhabditis elegans vulva has served as a paradigm for how conserved developmental pathways, such as EGF-Ras-MAPK, Notch and Wnt signaling, participate in networks driving animal organogenesis. Here, we discuss an emerging direction in the field, which places vulva research in a quantitative and microevolutionary framework. The final vulval cell fate pattern is known to be robust to change, but only recently has the variation of vulval traits been measured under stochastic, environmental or genetic variation. Whereas the resulting cell fate pattern is invariant among rhabditid nematodes, recent studies indicate that the developmental system has accumulated cryptic variation, even among wild C. elegans isolates. Quantitative differences in the signaling network have emerged through experiments and modeling as the driving force behind cryptic variation in Caenorhabditis species. On a wider evolutionary scale, the establishment of new model species has informed about the presence of qualitative variation in vulval signaling pathways.  相似文献   

6.
Ligands of the Delta/Serrate/Lag2 (DSL) family must normally be endocytosed in signal-sending cells to activate Notch in signal-receiving cells. DSL internalization and signaling are promoted in zebrafish and Drosophila, respectively, by the ubiquitin ligases Mind bomb (Mib) and Neuralized (Neur). DSL signaling activity also depends on Epsin, a conserved endocytic adaptor thought to target mono-ubiquitinated membrane proteins for internalization. Here, we present evidence that the Drosophila ortholog of Mib (Dmib) is required for ubiquitination and signaling activity of DSL ligands in cells that normally do not express Neur, and can be functionally replaced by ectopically expressed Neur. Furthermore, we show that both Dmib and Epsin are required in these cells for some of the endocytic events that internalize DSL ligands, and that the two Drosophila DSL ligands Delta and Serrate differ in their utilization of these Dmib- and Epsin-dependent pathways: most Serrate is endocytosed via the actions of Dmib and Epsin, whereas most Delta enters by other pathways. Nevertheless, only those Serrate and Delta proteins that are internalized via the action of Dmib and Epsin can signal. These results support and extend our previous proposal that mono-ubiquitination of DSL ligands allows them to gain access to a select, Epsin-dependent, endocytic pathway that they must normally enter to activate Notch.  相似文献   

7.
The Delta/Serrate/LAG-2 (DSL) domain-containing proteins, Delta1, Jagged1, and Jagged2, are considered to be ligands for Notch receptors. However, the physical interaction between the three DSL proteins and respective Notch receptors remained largely unknown. In this study, we investigated this issue through the targeting of Notch1 and Notch3 in two experimental systems using fusion proteins comprising their extracellular portions. Cell-binding assays showed that soluble forms of Notch1 and Notch3 proteins physically bound to the three DSL proteins on the cell surface. In solid-phase binding assays using immobilized soluble Notch1 and Notch3 proteins, it was revealed that each DSL protein directly bound to the soluble Notch proteins with different affinities. All interactions between the DSL proteins and soluble Notch proteins were dependent on Ca(2+). Taken together, these results suggest that Delta1, Jagged1, and Jagged2 are ligands for Notch1 and Notch3 receptors.  相似文献   

8.
Delta/Serrate/LAG-2 (DSL) proteins are putative transmembrane signaling molecules that regulate cell differentiation in metazoans. DSL proteins are characterized by the presence of a motif unique to these proteins, the DSL motif, and a variable number of tandemly repeated copies of an epidermal growth factor-like (EGF) motif. We have completed a phylogenetic analysis of 15 DSL proteins from eight species. Our findings reveal that at least one gene duplication occurred prior to the divergence of the Drosophila melanogaster and vertebrate lineages, with subsequent duplications in vertebrates. The three known Caenorhabditis elegans proteins likely arose by two independent duplications in the nematode lineage. Analysis of EGF repeats suggests that EGF 2 has been conserved among DSL proteins in vertebrates and D. melanogaster. The sequences of two EGF repeats have been perfectly conserved in vertebrate orthologs: EGF 2 in Delta and EGF 15 in Jagged/Serrate. Finally, the linear order of EGF repeats has been conserved in the vertebrate Jagged/Serrate orthologs and vertebrate Delta orthologs.  相似文献   

9.
10.
11.
12.
The cell interactions that specify the spatial pattern of vulval precursor cell (VPC) fates differ between the nematodes Oscheius tipulae CEW1 and Caenorhabditis elegans. In the former, the centered pattern of fates is obtained by two successive inductions from the gonadal anchor cell, whereas in the latter, a single inductive step by the anchor cell (EGF-Ras-MAP kinase pathway) can act as a morphogen and is reinforced by lateral signaling between the vulval precursors (Notch pathway). We performed a genetic screen for vulva mutants in O. tipulae CEW1. Here we present the mutants that specifically affect the vulval induction mechanisms. Phenotypic and epistatic analyses of these mutants show that both vulval induction steps share common components, one of which appears to be MEK kinase(s). Moreover, the inductive pathway (including MEK kinase) influences the competence of the vulval precursor cells and more strikingly their division pattern as well, irrespective of their vulval fate. Finally, a comparison of vulval mutant phenotypes obtained in C. elegans and O. tipulae CEW1 highlights the evolution of vulval induction mechanisms between the two species.  相似文献   

13.
DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.  相似文献   

14.
Recent findings suggest that Delta/Serrate/Lag2 (DSL) signals activate Notch by an unprecedented mechanism that requires the ligands to be endocytosed in signal-sending cells to activate the receptor in signal-receiving cells. Here, we show that cells devoid of Epsin, a conserved adaptor protein for Clathrin-mediated endocytosis, behave normally except that they cannot send DSL signals. Surprisingly, we find that Epsin is not required for bulk endocytosis of DSL proteins. Instead, Epsin appears to be essential for targeting DSL proteins to a special endocytic pathway that they must enter to acquire signaling activity. We present evidence that DSL proteins must be mono-ubiquitinated to be targeted by Epsin to this pathway. Furthermore, we show that the requirements for both Epsin and mono-ubiquitination can be bypassed by introducing the internalization signal that mediates endocytosis and recycling of the Low Density Lipoprotein (LDL) receptor. We propose that Epsin is essential for DSL signaling because it targets mono-ubiquitinated DSL proteins to an endocytic recycling compartment that they must enter to be converted into active ligands. Alternatively Epsin may be required to target mono-ubiquitinated DSL proteins to a particular subclass of coated pits that have special properties essential for Notch activation.  相似文献   

15.
16.
Endocytosis and trafficking within the endocytosis pathway are known to modulate the activity of different signaling pathways. Epsins promote endocytosis and are postulated to target specific proteins for regulated endocytosis. Here, we present a functional link between the Notch pathway and epsins. We identify the Drosophila ortholog of epsin, liquid facets (lqf), as an inhibitor of cardioblast development in a genetic screen for mutants that affect heart development. We find that lqf inhibits cardioblast development and promotes the development of fusion-competent myoblasts, suggesting a model in which lqf acts on or in fusion-competent myoblasts to prevent their acquisition of the cardioblast fate. lqf and Notch exhibit essentially identical heart phenotypes, and lqf genetically interacts with the Notch pathway during multiple Notch-dependent events in Drosophila. We extended the link between the Notch pathway and epsin function to C. elegans, where the C. elegans lqf ortholog acts in the signaling cell to promote the glp-1/Notch pathway activity during germline development. Our results suggest that epsins play a specific, evolutionarily conserved role to promote Notch signaling during animal development and support the idea that they do so by targeting ligands of the Notch pathway for endocytosis.  相似文献   

17.
Delta-like 3 (DLL3) is a member of the DSL family of Notch ligands in amniotes. In contrast to DLL1 and DLL4, the other Delta-like proteins in the mouse, DLL3 does not bind in trans to Notch and does not activate the receptor, but shows cis-interaction and cis-inhibitory properties on Notch signaling in vitro. Loss of the DSL protein DLL3 in the mouse results in severe somite patterning defects, which are virtually indistinguishable from the defects in mice that lack lunatic fringe (LFNG), a glycosyltransferase involved in modifying Notch signaling. Like LFNG, DLL3 is located within the trans-Golgi, however, its biochemical function is still unclear. Here, we show that i) both proteins interact, ii) epidermal growth factor like repeats 2 and 5 of DLL3 are O-fucosylated at consensus sites for POFUT1, and iii) further modified by FNG proteins in vitro. Embryos double homozygous for null mutations in Dll3 and Lfng are phenotypically indistinguishable from the single mutants supporting a potential common function. Mutation of the O-fucosylation sites in DLL3 does not disrupt the interaction of DLL3 with LFNG or full length Notch1or DLL1, and O-fucosylation-deficient DLL3 can still inhibit Notch in cis in vitro. However, in contrast to wild type DLL3, O-fucosylation-deficient DLL3 cannot compensate for the loss of endogenous DLL3 during somitogenesis in the embryo. Together our results suggest that the cis-inhibitory activity of DLL3 observed in cultured cells might not fully reflect its assumed essential physiological property, suggest that DLL3 and LFNG act together, and strongly supports that modification of DLL3 by O-linked fucose is essential for its function during somitogenesis.  相似文献   

18.
The Notch family genes encode single-pass transmembrane proteins which function in a variety of cell fate specifications in invertebrates and vertebrates. In Xenopus primary neurogenesis, the Notch ligands, X-Delta-1 and X-Serrate-1, mediate Notch signaling and regulate cell differentiation. In the present study, we examined the role of the Serrate-specific cysteine-rich (CR) region in the primary neurogenesis of Xenopus embryos. The ligand constructs containing the DSL (Delta/Serrate/Lag-2) domain in the extracellular region caused a reduction in primary neurons, whereas the DSL-deleted form of X-Delta-1 resulted in the overproduction of primary neurons. However, the DSL-deleted form of X-Serrate-1 or the construct containing only the CR region in the extracellular domain (SerCR) reduced the number of primary neurons. In contrast, the CR-deleted form of X-Serrate-1 (SerACR) lost activity as a Notch ligand, regardless of the presence of the DSL domain within the extracellular domain. Overexpression of X-Delta-1 and X-Serrate-1 strongly induced the expression of Xenopus ESR-1 (XESR-1), a gene related to Drosophila Enhancer of split. SerCR alone also moderately induced the expression of XESR-1, but the SerACR form did not induce this expression. Co-injection of X-Notch-1deltaICD, which deletes the intracellular domain (ICD), with SerCR suppressed a neurogenic phenotype, although co-injection of X-Su(H)1DBM with SerCR did not, indicating that SerCR affects primary neurogenesis through the Notch/Su(H) pathway. These results suggestthatthe CR region of Xenopus Serrate is required for the activation of Notch signaling and cell fate specification in primary neurogenesis.  相似文献   

19.
Vesicular trafficking plays a key role in tuning the activity of Notch signaling. Here, we describe a novel and conserved Rab geranylgeranyltransferase (RabGGT)-α–like subunit that is required for Notch signaling-mediated lateral inhibition and cell fate determination of external sensory organs. This protein is encoded by tempura, and its loss affects the secretion of Scabrous and Delta, two proteins required for proper Notch signaling. We show that Tempura forms a heretofore uncharacterized RabGGT complex that geranylgeranylates Rab1 and Rab11. This geranylgeranylation is required for their proper subcellular localization. A partial dysfunction of Rab1 affects Scabrous and Delta in the secretory pathway. In addition, a partial loss Rab11 affects trafficking of Delta. In summary, Tempura functions as a new geranylgeranyltransferase that regulates the subcellular localization of Rab1 and Rab11, which in turn regulate trafficking of Scabrous and Delta, thereby affecting Notch signaling.  相似文献   

20.
Originally discovered nearly a century ago, the Notch signaling pathway is critical for virtually all developmental programs and modulates an astounding variety of pathogenic processes. The DSL (Delta, Serrate, LAG-2 family) proteins have long been considered canonical activators of the core Notch pathway. More recently, a wide and expanding network of non-canonical extracellular factors has also been shown to modulate Notch signaling, conferring newly appreciated complexity to this evolutionarily conserved signal transduction system. Here, I review current concepts in Notch signaling, with a focus on work from the last decade elucidating novel extracellular proteins that up- or down-regulate signal potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号