首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In cells expressing only the Glut1 isoform of glucose transporters, we have shown that glucose transport is markedly stimulated in response to hypoxia or inhibition of oxidative phosphorylation, conditions that would be expected to cause a stimulation of AMP-activated protein kinase (AMPK) activity. In the present study we tested the hypothesis that the stimulation of AMPK activity might be accompanied by an enhancement of Glut1-mediated glucose transport. Exposure of Clone 9 cells, 3T3-L1 preadipocytes, and C(2)C(12) myoblasts (cells that express only the Glut1 isoform) to 5-aminoimidazole-4-carboxamideribonucleoside (AICAR), an adenosine analog that stimulates AMPK activity, resulted in a marked increase in the rate of glucose transport (ranging from four- to sixfold) that was accompanied by activation of AMPK. This stimulation of AMPK activity was associated with an increase in the phosphorylation of threonine 172 on the activation loop of its alpha subunit, with the predominant change being in the alpha-2 isoform. Exposure of Clone 9 cells to 5-iodotubercidin, an inhibitor of adenosine kinase, abolished the accumulation of AICAR-5'-monophosphate (ZMP), stimulation of AMPK, and the enhancement of glucose transport in response to AICAR. There was no significant increase in the content of Glut1 in plasma membranes of Clone 9 cells exposed to AICAR. We conclude that stimulation of AMPK activity is associated with enhancement of Glut1-mediated glucose transport, and that the glucose transport response is mediated by activation of Glut1 transporters preexisting in the plasma membrane.  相似文献   

2.
Activation of AMP-activated protein kinase (AMPK) has been recently demonstrated to be associated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-stimulated glucose transport mediated by both GLUT1 and GLUT4 transporters. However, signaling events upstream and downstream of AMPK are unknown. Here we report that 1) p38 mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase 3 (MKK3) were activated by AICAR in Clone 9 cells, which express only the GLUT1 transporters, and 2) activation of p38 was required for AICAR-stimulated glucose transport since treatment of the cells with p38 inhibitor SB203580 or overexpression of dominant negative p38 mutant inhibited glucose transport. Moreover, we found that overexpression of the constitutively active form of AMPK mutant also resulted in a significant activation of p38, and inhibition of p38 activity by SB203580 did not affect AICAR-stimulated activation of AMPK. These findings demonstrate that AICAR-stimulated activation of p38 is indeed mediated by AMPK, and the p38 MAPK cascade is downstream of AMPK in the signaling pathway of AICAR-stimulated glucose transport in Clone 9 cells.  相似文献   

3.
5'-AMP-activated protein kinase (AMPK) functions as an energy sensor to provide metabolic adaptation under conditions of ATP depletion, such as hypoxia and inhibition of oxidative phosphorylation. Whether activation of AMPK is critical for stimulation of glucose transport in response to inhibition of oxidative phosphorylation is unknown. Here we found that treatment of Glut1-expressing Clone 9 cells with sodium azide (5 mM for 2 h) or the AMPK activator 5'-aminoimidazole-4-carboxamide-1--D-ribofuranoside (AICAR, 2 mM for 2 h) stimulated the rate of glucose transport by two- to fourfold. Use of small interference RNA (siRNA) directed against AMPK1 or AMPK1 + AMPK2 (total AMPK) resulted in a significant inhibition of the glucose transport response and the content of phosphorylated AMPK1 + phosphorylated AMPK2 (total p-AMPK) and phosphorylated acetyl-CoA carboxylase (p-ACC) in response to azide. Transfection with siRNA directed against AMPK2 did not affect the glucose transport response. The efficacy of transfection with siRNAs in reducing AMPK content was confirmed by Western blotting. Incubation of cells with compound C, an inhibitor of AMPK, abrogated the glucose transport response and abolished the increase in total p-AMPK in azide-treated or hypoxia-exposed cells. Simultaneous exposure to azide and AICAR did not augment the rate of transport in response to AICAR alone. There was no evidence of coimmunoprecipitation of total p-AMPK with Glut1. However, LKB1 was associated with total p-AMPK. We conclude that activation of AMPK plays both a sufficient and a necessary role in the stimulation of glucose transport in response to inhibition of oxidative phosphorylation. small interference RNA; compound C; hypoxia  相似文献   

4.
Conjugated linoleic acid (CLA), a dietary lipid, has been proposed as an antidiabetic agent. However, studies specifically addressing the molecular dynamics of CLA on skeletal muscle glucose transport and differences between the key isomers are limited. We demonstrate that acute exposure of L6 myotubes to cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) CLA isomers mimics insulin action by stimulating glucose uptake and glucose transporter-4 (GLUT4) trafficking. Both c9,t10-CLA and t10,c12-CLA stimulate the phosphorylation of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit and Akt substrate-160 kDa (AS160), while showing isomer-specific effects on AMP-activated protein kinase (AMPK). CLA isomers showed synergistic effects with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Blocking PI3-kinase and AMPK prevented the stimulatory effects of t10,c12-CLA on AS160 phosphorylation and glucose uptake, indicating that this isomer acts via a PI3-kinase and AMPK-dependent mechanism, whereas the mechanism of c9,t11-CLA remains unclear. Intriguingly, CLA isomers sensitized insulin-Akt-responsive glucose uptake and prevented high insulin-induced Akt desensitisation. Together, these results establish that CLA exhibits isomer-specific effects on GLUT4 trafficking and the increase in glucose uptake induced by CLA treatment of L6 myotubes occurs via pathways that are distinctive from those utilised by insulin.  相似文献   

5.
This study was performed to identify genes that are regulated in the adaptive response to prolonged inhibition of oxidative phosphorylation. Gene microarray analysis in control Clone 9 cells and Clone 9 cells exposed to 5 mM azide for 24 h was carried out as a condition of "Chemical hypoxia." Among several hundred mRNAs whose abundances were either increased or decreased, we noted that the abundance of mRNAs encoding enzymes that catalyze the sequential steps of cholesterol synthesis was decreased; this finding was verified by real-time PCR. Exposure to azide for 24 h markedly inhibited the biosynthesis of cholesterol by approximately 90% and decreased the cellular content of cholesterol by 30%, similar results were observed in HepG2 cells. The abundance of sterol regulatory element binding protein (SREBP)-2 mRNA decreased to 0.37 and 0.25 that of controls after 2 and 24 h exposure, respectively. After 24 h of exposure to azide the precursor and nuclear forms of SREBP-2 protein decreased by approximately 80% and approximately 50%, respectively. Stimulation of AMP-activated protein kinase (AMPK) by AICAR in Clone 9 cells increased the abundance of mRNAs encoding cholesterol biosynthetic enzymes and that of SREBP-1c, and had no effect on SREBP-2 mRNA abundance. We conclude that the decrease in the abundance of multiple mRNAs encoding cholesterol biosynthetic enzymes may be mediated by decreased expression of SREBP-2 mRNA and protein and does not involve stimulation of AMPK. The decrease in SREBP-2 mRNA and protein abundance in the face of decreased cell cholesterol content raises the possibility of a novel regulatory pathway.  相似文献   

6.
AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.  相似文献   

7.
We have previously shown that exposure of Clone 9 cells to hypoxia, cyanide, or azide results in an acute stimulation of glucose transport that is largely mediated by "activation" of glucose transporter (Glut1) sites preexisting in the plasma membrane. However, it is not known whether inhibition of oxidative phosphorylation only at its terminal step, or at any of its steps, leads to the glucose transport response. Hence, the effect of azide (5 mM), rotenone (1 microM), rotenone (1 microM) plus thenoyltrifluoroacetone (TTFA) (5 microM), antimycin A (0.3 microM), dinitrophenol (0.25 mM), carbonyl cyanide m-chlorophenylhydrazone (CCCP) (2.5 microM), and oligomycin B (0.15 microM) on glucose transport was determined. All of the above agents elicited a similar approximately 4-fold stimulation of cytochalasin B (CB)-inhibitable 3-O-methyl glucose (3-OMG) uptake in Clone 9 cells. The stimulatory effect of azide on 3-OMG uptake was not inhibited by antioxidants 2-mercaptopropionyl glycine (1.2 mM) and 1,10-phenanthroline (40 microM), while, in contrast, the antioxidants attenuated the stimulation of glucose transport in response to 250 microM H(2)O(2) by approximately 50%. To differentiate between an increase in the number of functional Glut1 sites in the plasma membrane (in the absence of "translocation") versus an increase in the "intrinsic activity" of Glut1, the effect of azide on the energy of activation (E(a)) of glucose transport was measured. The E(a) was determined by measuring the rate of CB-inhibitable 3-OMG uptake at 24.0, 28.0, 35. 0, and 40 degrees C. The E(a) of control Clone 9 cells and of cells exposed to 10 mM azide for 2 h was 32,530 +/- 1830 and 31,220 +/- 600 J/mol, respectively (P > 0.1), while the rate of CB-inhibitable 3-OMG uptake was 9.3 +/- 0.7-fold higher in azide-treated cells. It is concluded that (i) inhibition of oxidative phosphorylation, at any of its steps, leads to a stimulation of glucose transport, and (ii) the mechanism of stimulation of glucose transport in response to azide appears to be predominately mediated by an apparent increase in the number of functional Glut1 sites in the plasma membrane (instead of an increase in their "intrinsic activity"), suggesting an "unmasking" mechanism.  相似文献   

8.
The Akt substrate of 160 kDa (AS160) is phosphorylated on Akt substrate (PAS) motifs in response to insulin and contraction in skeletal muscle, regulating glucose uptake. Here we discovered a dissociation between AS160 protein expression and apparent AS160 PAS phosphorylation among soleus, tibialis anterior, and extensor digitorum longus muscles. Immunodepletion of AS160 in tibialis anterior muscle lysates resulted in minimal depletion of the PAS band at 160 kDa, suggesting the presence of an additional PAS immunoreactive protein. By immunoprecipitation and mass spectrometry, we identified this protein as the AS160 paralog TBC1D1, an obesity candidate gene regulating GLUT4 translocation in adipocytes. TBC1D1 expression was severalfold higher in skeletal muscles compared with all other tissues and was the dominant protein detected by the anti-PAS antibody at 160 kDa in tibialis anterior and extensor digitorum longus but not soleus muscles. In vivo stimulation by insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR increased TBC1D1 PAS phosphorylation. Using mass spectrometry on TBC1D1 from mouse skeletal muscle, we identified several novel phosphorylation sites on TBC1D1 and found the majority were consensus or near consensus sites for AMPK. Semiquantitative analysis of spectra suggested that AICAR caused greater overall phosphorylation of TBC1D1 sites compared with insulin. Purified Akt and AMPK phosphorylated TBC1D1 in vitro, and AMPK, but not Akt, reduced TBC1D1 electrophoretic mobility. TBC1D1 is a major PAS immunoreactive protein in skeletal muscle that is phosphorylated in vivo by insulin, AICAR, and contraction. Both Akt and AMPK phosphorylate TBC1D1, but AMPK may be the more robust regulator.  相似文献   

9.
10.
Glucose transport is stimulated in a variety of cells and tissues in response to inhibition of oxidative phosphorylation. However, the underlying mechanisms and mediating steps remain largely unknown. In the present study we first tested whether a decrease in the redox state of the cell per se and the resultant increase in generation of reactive oxygen species (ROS) lead to stimulation of glucose transport. Clone 9 cells (expressing the Glut1 isoform of facilitative glucose transporters) were exposed to azide, lactate, and ethanol for 1 h. Although all three agents stimulated glucose transport and increased cell NADH-to-NAD+ ratio and phospho-ERK1/2, signifying increased ROS generation, the response to the stimuli was not blocked by N-acetyl-L-cysteine (an agent that counteracts ROS); moreover, the response to azide was not blocked by diamide (an intracellular sulfhydryl oxidizing agent). We then found that cell AMP-to-ATP and ADP-to-ATP ratios were increased and 5'-AMP-activated protein kinase (AMPK) was stimulated by all three agents, as evidenced by increased phosphorylation of AMPK and acetyl-CoA carboxylase. We conclude that although azide, lactate, and ethanol increase NADH-to-NAD+ ratios and ROS production, their stimulatory effect on glucose transport is not mediated by increased ROS generation. However, all three agents increased cell AMP-to-ATP ratio and stimulated AMPK, making it likely that the latter pathway plays an important role in the glucose transport response. 5-aminoimidazole-4-carboxamide-1--D-ribofuranoside; extracellular signal related-kinase 1/2; phospho-extracellular signal related-kinase 1/2; N-acetyl-L-cysteine; diamide; acetyl-CoA carboxylase; phospho-acetyl-CoA carboxylase  相似文献   

11.
AS160 (Akt substrate of 160 kDa) and TBC1D1 are related RabGAPs (Rab GTPase-activating proteins) implicated in regulating the trafficking of GLUT4 (glucose transporter 4) storage vesicles to the cell surface. All animal species examined contain TBC1D1, whereas AS160 evolved with the vertebrates. TBC1D1 has two clusters of phosphorylated residues, either side of the second PTB (phosphotyrosine-binding domain). Each cluster contains a 14-3-3-binding site. When AMPK (AMP-activated protein kinase) is activated in HEK (human embryonic kidney)-293 cells, 14-3-3s bind primarily to pSer237 (where pSer is phosphorylated serine) in TBC1D1, whereas 14-3-3 binding depends primarily on pThr596 (where pThr is phosphorylated threonine) in cells stimulated with IGF-1 (insulin-like growth factor 1), EGF (epidermal growth factor) and PMA; and both pSer237 and pThr596 contribute to 14-3-3 binding in cells stimulated with forskolin. In HEK-293 cells, LY294002 inhibits phosphorylation of Thr596 of TBC1D1, and promotes phosphorylation of AMPK and Ser237 of TBC1D1. In vitro phosphorylation experiments indicated regulatory interactions among phosphorylated sites, for example phosphorylation of Ser235 prevents subsequent phosphorylation of Ser237. In rat L6 myotubes, endogenous TBC1D1 is strongly phosphorylated on Ser237 and binds to 14-3-3s in response to the AMPK activators AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside), phenformin and A-769662, whereas insulin promotes phosphorylation of Thr596 but not 14-3-3 binding. In contrast, AS160 is phosphorylated on its 14-3-3-binding sites (Ser341 and Thr642) and binds to 14-3-3s in response to insulin, but not A-769662, in L6 cells. These findings suggest that TBC1D1 and AS160 may have complementary roles in regulating vesicle trafficking in response to insulin and AMPK-activating stimuli in skeletal muscle.  相似文献   

12.
AMPK is an AMP-activated protein kinase that plays an important role in regulating cellular energy homeostasis. Metabolic stress, such as heat shock and glucose starvation, causes an energy deficiency in the cell and leads to elevated levels of intracellular AMP. This results in the phosphorylation and activation of AMPK. LKB1, a tumor suppressor, has been identified as an upstream kinase of AMPK. We found that in response to treatment with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), the LKB1 deficient cancer cell line, HeLa, exhibited AMPK-α phosphorylation. This indicates the existence of an LKB1-independent AMPK-α phosphorylation pathway. ATM is a protein that is deficient in the disease ataxia telangiectasia (A-T). We measured the activation of AMPK by AICAR in the normal mouse embryo fibroblast cell line, A29, and the mouse cell line lacking the ATM protein, A38. In A38 cells, the level of AICAR-induced AMPK-α phosphorylation was significantly lower than that found in A29 cells. Furthermore, phosphorylation of AMPK in HeLa and A29 cells was inhibited by an ATM specific inhibitor, KU-55933. Our results demonstrate that AICAR treatment could lead to phosphorylation of AMPK in an ATM-dependent and LKB1-independent manner. Thus, ATM may function as a potential AMPK kinase in response to AICAR treatment.  相似文献   

13.
8‐chloro‐cyclic AMP (8‐Cl‐cAMP), which induces differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti‐cancer drug. However, the exact mechanism of 8‐Cl‐cAMP functioning in cancer cells is not fully understood. Akt/protein kinase B (PKB) genes (Akt1, Akt2, and Akt3) encode enzymes belonging to the serine/threonine‐specific protein kinase family. It has been suggested that Akt/PKB enhances cell survival by inhibiting apoptosis. Recently, we showed that 8‐Cl‐cAMP and 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR) inhibited cancer cell growth through the activation of AMPK and p38 MAPK. Therefore, we anticipated that the phosphorylation of Akt/PKB would be decreased upon treatment with 8‐Cl‐cAMP. However, treatment with 8‐Cl‐cAMP and AICAR induced the phosphorylation of Akt/PKB, which was inhibited by ABT702 (an adenosine kinase inhibitor) and NBTI (an adenosine transporter inhibitor). Furthermore, whereas Compound C (an AMPK inhibitor), AMPK‐DN (AMPK‐dominant negative) mutant, and SB203580 (a p38 MAPK inhibitor) did not block the 8‐Cl‐cAMP‐induced phosphorylation of Akt/PKB, TCN (an Akt1/2/3 specific inhibitor) and an Akt2/PKBβ‐targeted siRNA inhibited the 8‐Cl‐cAMP‐ and AICAR‐mediated phosphorylation of AMPK and p38 MAPK. TCN also reversed the growth inhibition mediated by 8‐Cl‐cAMP and AICAR. Moreover, an Akt1/PKBα‐targeted siRNA did not reduce the phosphorylation of AMPK and p38 MAPK after treatment with 8‐Cl‐cAMP. These results suggest that Akt2/PKBβ activation promotes the phosphorylation of AMPK and p38 MAPK during the 8‐Cl‐cAMP‐ and AICAR‐induced growth inhibition. J. Cell. Physiol. 228: 890–902, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Diabetic cardiomyopathy (DCM) has become a major cause of diabetes-related morbidity and mortality. Increasing evidences have proved that hydrogen sulfide (H2S) fulfills a positive role in regulating diabetic myocardial injury. The present study was designed to determine whether GYY4137, a novel H2S-releasing molecule, protected H9c2 cells against high glucose (HG)-induced cytotoxicity by activation of the AMPK/mTOR signal pathway. H9c2 cells were incubated in normal glucose (5.5 mM), 22, 33, and 44 mM glucose for 24 h to mimic the hyperglycemia in DCM in vitro. Then we added 50, 100, and 200 μM GYY4137, and measured the cell viability, lactate dehydrogenase (LDH) enzyme activity, and mitochondrial membrane potential (MMP). 0.5 mM 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) and 1 mM adenine 9-β-d-arabinofuranoside (Ara-A, an AMPK inhibitor) were used to identity whether the AMPK/mTOR signal pathway was involved in GYY4137-mediated cardioprotection. We demonstrated that HG decreased cell viability and increased LDH enzyme activity in a concentration-dependent manner. 33 mM HG treatment for 24 h was chosen as our model group for further study. Both 100 and 200 μM GYY4137 treatments significantly attenuated HG-induced cell viability decrement, LDH enzyme activity increase, and MMP collapse. AICAR had similar effects to GYY4137 treatment while Ara-A attenuated GYY4137-mediated cardioprotection. Importantly, both GYY4137 and AICAR increased AMPK phosphorylation and decreased mTOR phosphorylation compared with the HG model group while Ara-A attenuated GYY4137-mediated AMPK phosphorylation increase and mTOR phosphorylation decrement. In conclusion, we propose that GYY4137 likely protects against HG-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells.  相似文献   

15.
Conjugated linoleic acid (CLA), a dietary fat, has been considered beneficial in metabolic syndrome. Despite several findings indicating that CLA improves glucose clearance, little information is available regarding the cellular dynamics of CLA on skeletal muscle. We sought to investigate the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in cis-9, trans-11(c9,t11) and trans-10, cis-12 (t10,c12) CLA isomer-mediated glucose transport by L6 myotubes. t10,c12-CLA stimulated both intracellular Ca(2+) release (Ca(i)(2+)) and CaMKII phosphorylation, whereas c9,t11-CLA showed only modest effects on both. Sequestering Ca(i)(2+) with BAPTA/AM abrogated the effect of both CLA isomers on Akt substrate-160 kDa (AS160) phosphorylation and glucose uptake by myotubes. Exposing myotubes to KN-93 or autocamtide 2-related inhibitory peptide to block CaMKII activity prevented both CLA isomers from inducing AS160 phosphorylation and glucose transport. Likewise, genetic knockdown of CaMKII in myotubes using siRNA completely abolished CLA isomer-mediated glucose uptake. These results indicate that CLA isomers require Ca(i)(2+)-CaMKII to mediate glucose uptake. Evidence that CaMKII blockers inhibit t10,c12-CLA-mediated AMP-activated protein kinase (AMPK) activation indicated that CaMKII acts upstream of AMPK in response to t10,c12-CLA. Lastly, CLA isomers stimulated the formation of reactive oxygen species but had no effect on stress-activated protein kinase/c-jun NH(2)-terminal kinase. These data establish that t10,c12-CLA acts via Ca(i)(2+)-CaMKII-AMPK-AS160 to stimulate skeletal muscle glucose transport, whereas the mechanism of c9,t11-CLA remains unclear. Given that impairments in muscle glucose utilisation are apparent in metabolic syndrome, delineating the molecular mechanisms by which CLA isomers mediate muscle glucose uptake may identify new approaches to manage this condition.  相似文献   

16.
We have previously shown that the acute stimulation of glucose transport in Clone 9 cells in response to azide is mediated by activation of Glut1 and that stomatin, a Glut1-binding protein, appears to inhibit Glut1 function. In Clone 9 cells under basal conditions, 38% of Glut1, 70% of stomatin, and the bulk of caveolin-1 was localized in the detergent-resistant membrane (DRM) fraction; a significant fraction of Glut1 is also present in DRMs of 3T3-L1 fibroblasts and human red blood cells (RBCs). Acute exposure to azide resulted in 40 and 50% decreases in the content of Glut1 in DRMs of Clone 9 cells and 3T3-L1 fibroblasts, respectively, whereas the distribution of stomatin and caveolin-1 in Clone 9 cells remained unchanged. In addition, treatment of Clone 9 cells with azide resulted in a 50% decrease in the content of Glut1 in the DRM fraction of plasma membranes. We conclude that 1) a significant fraction of Glut1 is localized in DRMs, and 2) treatment of cells with azide results in a partial redistribution of Glut1 out of the DRM fraction. stomatin; caveolin-1; transferrin receptor; sucrose density fractionation; lipid raft  相似文献   

17.
Capsaicin has been reported to regulate blood glucose levels and to ameliorate insulin resistance in obese mice. This study demonstrates that capsaicin increases glucose uptake directly by activating AMP-activated protein kinase (AMPK) in C2C12 muscle cells, which manifested as an attenuation of glucose uptake when compound C, an AMPK inhibitor, was co-administered with capsaicin. However, the insulin signaling molecules insulin receptor substrate-1 (IRS-1) and Akt were not affected by capsaicin. Additional results showed that p38 mitogen-activated protein kinase (MAPK) is also involved in capsaicin-induced glucose transport downstream of AMPK because capsaicin increased p38 MAPK phosphorylation significantly and its specific inhibitor SB203580 inhibited capsaicin-mediated glucose uptake. Treatment with an AMPK inhibitor reduced p38 MAPK phosphorylation, but the p38 MAPK inhibitor had no effect on AMPK. Capsaicin stimulated ROS generation in C2C12 muscle cells, and when ROS were captured using the nonspecific antioxidant NAC, the increase in both capsaicin-induced AMPK phosphorylation and capsaicin-induced glucose uptake was attenuated, suggesting that ROS function as an upstream activator of AMPK. Taken together, these results suggest that capsaicin, independent of insulin, increases glucose uptake via ROS generation and consequent AMPK and p38 MAPK activations.  相似文献   

18.
AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulin- and contraction-stimulated muscle glucose uptake through regulating GLUT4 trafficking. Insulin increases AS160 phosphorylation at multiple Akt/PKB consensus sites, including Thr(649), and promotes its binding to 14-3-3 proteins through phospho-Thr(649). We recently provided genetic evidence that AS160-Thr(649) phosphorylation/14-3-3 binding plays a key role in mediating insulin-stimulated glucose uptake in muscle. Contraction has also been proposed to increase phosphorylation of AS160 and TBC1D1 via AMPK, which could be detected by a generic phospho-Akt substrate (PAS) antibody. Here, analysis of AS160 immunoprecipitates from muscle extracts with site-specific phospho-antibodies revealed that contraction and AICAR caused no increase but rather a slight decrease in phosphorylation of the major PAS recognition site AS160-Thr(649). In line with this, contraction failed to enhance 14-3-3 binding to AS160. Consistent with previous reports, we also observed that in situ contraction stimulated the signal intensity of PAS antibody immunoreactive protein of ~150-160 kDa in muscle extracts. Using a TBC1D1 deletion mutant mouse, we showed that TBC1D1 protein accounted for the majority of the PAS antibody immunoreactive signals of ~150-160 kDa in extracts of contracted muscles. Consistent with the proposed role of AS160-Thr(649) phosphorylation/14-3-3 binding in mediating glucose uptake, AS160-Thr(649)Ala knock-in mice displayed normal glucose uptake upon contraction and AICAR in isolated muscles. We conclude that the previously reported PAS antibody immunoreactive band ~150-160 kDa, which were increased upon contraction, does not represent AS160 but TBC1D1, and that AS160-Thr(649)Ala substitution impairs insulin- but neither contraction- nor AICAR-stimulated glucose uptake in mouse skeletal muscle.  相似文献   

19.
Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [3H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKα1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27kip suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21cip and p27kip expression via AMPK activation, and small interfering RNA (siRNA) of p21cip and p27kip restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号