首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

2.
Although it has been widely asserted that plants mate assortatively by flowering time, there is virtually no published information on the strength or causes of phenological assortment in natural populations. When strong, assortative mating can accelerate the evolution of plant reproductive phenology through its inflationary effect on genetic variance. We estimated potential assortative mating for flowering date in 31 old‐field species in Ontario, Canada. For each species, we constructed a matrix of pairwise mating probabilities from the individual flowering schedules, that is the number of flower deployed on successive dates. The matrix was used to estimate the phenotypic correlation between mates, ρ, for flowering date. We also developed a measure of flowering synchrony within species, S, based upon the eigenstructure of the mating matrix. The mean correlation between pollen recipients and potential donors for flowering date was  = 0.31 (range: 0.05–0.63). A strong potential for assortative mating was found among species with high variance in flowering date, flowering schedules of short duration and skew towards early flower deployment. Flowering synchrony, S, was negatively correlated with potential assortment (= ?0.49), but we go on to show that although low synchrony is a necessary condition for phenological assortative mating, it may not be sufficient to induce assortment for a given phenological trait. The potential correlation between mates showed no seasonal trend; thus, as climate change imposes selection on phenology through longer growing seasons, spring‐flowering species are no more likely to experience an accelerated evolutionary response than summer species.  相似文献   

3.
We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition.  相似文献   

4.
I use multilocus genetics to describe assortative mating in a competition model. The intensity of competition between individuals is influenced by a quantitative character whose value is determined additively by alleles from many loci. With assortative mating based on this character, frequency- and density-dependent competition can subdivide a population with an initially unimodal character distribution. The character distribution becomes bimodal, and the subpopulations corresponding to the two modes are reproductively separated because mating is assortative. This happens if the resource distribution is unimodal, i.e. even if selection due to phenotypic carrying capacities is not disruptive. The results suggest that sympatric speciation due to frequency-dependent selection can occur in quite general ecological scenarios if mating is assortative. I also discuss the evolution of assortative mating. Since it induces bimodal phenotype distributions, assortative mating leads to a better match of the resources if their distribution is also bimodal. Moreover, in a population with a bimodal phenotype distribution, the average strength of frequency-dependent competition is lower than in a unimodal population. Therefore, assortative mating permits higher equilibrium densities than random mating even if the resource distribution is unimodal. Thus, even though it may lead to a less efficient resource use, assortative mating is favoured over random mating because it reduces frequency-dependent effects of competition.  相似文献   

5.
Abstract. Thirteen-year cicadas of brood XIX from northern Arkansas, Missouri, and southern Illinois (lineage A) are known to be genetically different at two marker loci (mitochondrial DNA and abdominal color) from 13-year cicadas to the south (lineage B) that emerge in the same year. Because 17-year cicadas from all broods (year classes) are indistinguishable from lineage A at these two marker loci, previous workers suggested that the lineage A cicadas of 13-year brood XIX were derived from 17-year cicadas by life-cycle switching (allochrony). Data presented here show that, over the same northern geographic range, lineage A is also present in 13-year cicadas belonging to brood XXIII (which always emerges four years later than brood XIX). Detailed sampling along the putative life-cycle-switching boundary in 13-year brood XXIII revealed a previously unsuspected broad zone of overlap where populations contained individuals of both lineages A and B. Despite this sympatry, and previous reports of a lack of behavioral barriers to interbreeding, a strong correlation between mitochondrial haplotype and abdominal color suggests that assortative mating has taken place. Lineage A 13-year cicadas from both broods XIX and XXIII are only found within a gap in the spatial distribution of 17-year cicadas. This, in combination with the lack of differentiation between lineage A 13- and 17-year cicadas at the marker loci and new behavioral data for 13-year brood XIX, suggests a recent derivation of all northern 13-year cicadas from the 17-year cicadas via life-cycle switching. We discuss the implications of these allochronic shifts for speciation.  相似文献   

6.
Assortative mating – correlation between male and female traits – is common within populations and has the potential to promote genetic diversity and in some cases speciation. Despite its importance, few studies have sought to explain variation in the extent of assortativeness across populations. Here, we measure assortative mating based on an ecologically important trait, diet as inferred from stable isotopes, in 16 unmanipulated lake populations of three‐spine stickleback. As predicted, we find a tendency toward positive assortment on the littoral–pelagic axis, although the magnitude is consistently weak. These populations vary relatively little in the strength of assortativeness, and what variation occurs is not explained by hypothesized drivers including habitat cosegregation, the potential for disruptive selection, costs to choosiness, and the strength of the relationship between diet and body size. Our results support recent findings that most assortative mating is positive, while suggesting that new approaches may be required to identify the environmental variables that drive the evolution of nonrandom mating within populations.  相似文献   

7.
Summary Three types of genes have been proposed to promote sympatric speciation: habitat preference genes, assortative mating genes and habitat-based fitness genes. Previous computer models have analysed these genes separately or in pairs. In this paper we describe a multilocus model in which genes of all three types are considered simultaneously. Our computer simulations show that speciation occurs in complete sympatry under a broad range of conditions. The process includes an initial diversification phase during which a slight amount of divergence occurs, a quasi-equilibrium phase of stasis during which little or no detectable divergence occurs and a completion phase during which divergence is dramatic and gene flow between diverging habitat morphs is rapidly eliminated. Habitat preference genes and habitat-specific fitness genes become associated when assortative mating occurs due to habitat preference, but interbreeding between individuals adapted to different habitats occurs unless habitat preference is almost error free. However, nonhabitat assortative mating, when coupled with habitat preference can eliminate this interbreeding. Even when several loci contribute to the probability of expression of non-habitat assortative mating and the contributions of individual loci are small, gene flow between diverging portions of the population can terminate within less than 1000 generations.  相似文献   

8.
Reproductive timing is a key life‐history trait that impacts the pool of available mates, the environment experienced during flowering, and the expression of other traits through genetic covariation. Selection on phenology, and its consequences on other life‐history traits, has considerable implications in the context of ongoing climate change and shifting growing seasons. To test this, we grew field‐collected seed from the wildflower Mimulus guttatus in a greenhouse to assess the standing genetic variation for flowering time and covariation with other traits. We then created full‐sib families through phenological assortative mating and grew offspring in three photoperiod treatments representing seasonal variation in daylength. We find substantial quantitative genetic variation for the onset of flowering time, which covaried with vegetative traits. The assortatively‐mated offspring varied in their critical photoperiod by over two hours, so that families differed in their probability of flowering across treatments Allocation to flowering and vegetative growth changed across the daylength treatments, with consistent direction and magnitude of covariation among flowering time and other traits. Our results suggest that future studies of flowering time evolution should consider the joint evolution of correlated traits and shifting seasonal selection to understand how environmental variation influences life histories.  相似文献   

9.
In north Georgia populations of the soldier beetle, Chauliognathus pennsylvanicus , the length of the elytral spot varies clinally. At the southern end of a 200 km cline the distribution of spot length is unimodal with longer spot lengths predominating while at the northern end of the cline the distribution is bimodal but with shorter spot lengths being more frequent. North of the cline only short elytral spot lengths are observed, while the converse is true south of the cline. The strength of assortative mating on the basis of elytral spot length increases from south to north along the cline, resulting in complete pre-mating isolation between short and long spot length morphs at the north end of the cline. Laboratory mate choice tests indicate that assortative mating in the field is not the result of differential timing of activity or microhabitat choice but rather that it represents a real behavioural preference. Individuals from monomorphic populations on either side of the cline do not mate assortatively in the laboratory, indicating that reproductive isolation has evolved on the cline.  相似文献   

10.
This paper develops methods to partition the phenotypic correlation between mates for a focal trait--the standard measure for assortative mating--into a direct component and additional indirect components. Indirect assortative mating occurs when a nonassorting trait is correlated within individuals to a directly assorting trait. Direct and indirect assortative mating is assessed for flowering phenology in Brassica rapa. The flowering time of pollen recipients (mothers) was strongly correlated (rho=0.67) to that of potential pollen donors (fathers). Similarly, recipients and donors were correlated for duration of their flowering periods (rho=0.32) and stem diameters (rho=0.52). A partitioning of between-mate correlations revealed direct assortative mating for flowering time and period duration. However, assortment for stem diameter is explained solely through its correlation to flowering time. Examination of standard quantitative genetic theory shows that indirect assortative mating inflates genetic variance in a focal trait and the genetic covariance between focal and phenotypically correlated traits.  相似文献   

11.
The mode in which sexual organisms choose mates is a key evolutionary process, as it can have a profound impact on fitness and speciation. One way to study mate choice in the wild is by measuring trait correlation between mates. Positive assortative mating is inferred when individuals of a mating pair display traits that are more similar than those expected under random mating while negative assortative mating is the opposite. A recent review of 1134 trait correlations found that positive estimates of assortative mating were more frequent and larger in magnitude than negative estimates. Here, we describe the scale‐of‐choice effect (SCE), which occurs when mate choice exists at a smaller scale than that of the investigator's sampling, while simultaneously the trait is heterogeneously distributed at the true scale‐of‐choice. We demonstrate the SCE by Monte Carlo simulations and estimate it in two organisms showing positive (Littorina saxatilis) and negative (L. fabalis) assortative mating. Our results show that both positive and negative estimates are biased by the SCE by different magnitudes, typically toward positive values. Therefore, the low frequency of negative assortative mating observed in the literature may be due to the SCE's impact on correlation estimates, which demands new experimental evaluation.  相似文献   

12.
Back to the future: genetic correlations, adaptation and speciation   总被引:1,自引:0,他引:1  
Via S  Hawthorne DJ 《Genetica》2005,123(1-2):147-156
Genetic correlations can affect the course of phenotypic evolution. Although genetic correlations among traits are a common feature of quantitative genetic analyses, they have played a very minor role in recent linkage-map based analyses of the genetic architecture of quantitative traits. Here, we use our work on host-associated races in pea aphids to illustrate how quantitative trait locus (QTL) mapping can be used to test specific hypotheses about how genetic correlations may facilitate ecological specialization and speciation.  相似文献   

13.
14.
Eurosta solidaginis Fitch (Diptera: Tephritidae) has formed host races on Solidago altissima L. and Solidago gigantea Ait. (Asteraceae), and reproductive isolation between these host races is brought about in part by host‐associated assortative mating. Any non‐assortative mating creates the potential for gene flow between the populations, and we investigated the conditions that favored non‐assortative mating. We hypothesized that the frequency of non‐assortative mating would be influenced by differences in the behaviors of the host races and sexes and by the presence and pattern of distribution of the two host species. To test these hypotheses, we caged flies on four combinations of 32 potted host plants: all S. altissima, all S. gigantea, and cages with both host species arranged in either two pure species blocks or randomly dispersed. We recorded the number of flies of each host race that alighted on each host species and the frequency of mating within and between the host races. Males of both host races were observed on plants more frequently than females. Flies of the host race from S. gigantea (gig flies) were observed on plants in greater absolute numbers, and they mated more frequently than flies of the host race from S. altissima (alt flies). In all treatments, gig flies of both sexes were found on non‐natal host plants significantly more frequently than alt flies, and gig females showed a weaker preference for their host species than did gig males or alt flies of either gender for their respective natal hosts. Assortative mating predominated in all treatments, and flies from each host race mated more frequently in cages containing their own host plant. The frequency of non‐assortative mating varied among treatments, with the matings between alt ♀ × gig ♂ being more common in the pure S. altissima treatment and the gig ♀ × alt ♂ being more frequent in the pure S. gigantea and random treatments. Matings between gig ♂ × alt ♀ were more common overall than the reciprocal mating, because gig males were more active in pursuing matings and in alighting on the non‐natal host plant than alt flies. Non‐assortative matings were more frequent in the random than in the block treatments, but this difference was not significant. Because of strong selection against oviposition into the alternate host, we hypothesized that host plant distribution would not affect oviposition preference. We tested this hypothesis by examining the oviposition behavior of naïve, mated females in two treatments in which both host species were present: either arranged in blocks or randomly dispersed. Females oviposited only into their natal host, regardless of host plant distribution.  相似文献   

15.
We investigate how costs of choosiness affect the evolution of assortative mating in a simple model of competitive speciation. The model allows for a comprehensive analysis by analytical and numerical techniques. We obtain results for two types of costs: mating costs, which restrict the number of males a choosy female can evaluate, and viability costs, which decrease a choosy female's survival. Mating costs significantly reduce the range of parameters for which speciation is possible, but only if the number of males a female can evaluate is small (less than 10). This type of costs can be eliminated if females are allowed to mate randomly at the end of the mating period. Although, in this case, it is not possible to achieve complete reproductive isolation, our results show partial isolation with strong phenotypic clustering. Viability costs counteract selection for assortative mating. As this selection is typically weak, speciation is possible only if viability costs, too, are weak. The above restrictions are less severe if extreme phenotypes have an intrinsically higher carrying capacity.  相似文献   

16.
Gene flow is generally considered a random process, that is the loci under consideration have no effect on dispersal success. Edelaar and Bolnick (Trends Ecol Evol, 27, 2012 659) recently argued that nonrandom gene flow could exert a significant evolutionary force. It can, for instance, ameliorate the maladaptive effects of immigration into locally adapted populations. I examined the potential strength for nonrandom gene flow for flowering time genes, a trait frequently found to be locally adapted. The idea is that plants that successfully export pollen into a locally adapted resident population will be a genetically biased subset of their natal population – they will have resident‐like flowering times. Reciprocally, recipients will be more migrant‐like than the resident population average. I quantified the potential for biased pollen exchange among three populations along a flowering time cline in Brassica rapa from southern California. A two‐generation line cross experiment demonstrated genetic variance in flowering time, both within and among populations. Calculations based on the variation in individual flowering schedules showed that resident plants with the most migrant‐like flowering times could expect to have up to 10 times more of the their flowers pollinated by immigrant pollen than the least migrant‐like. Further, the mean flowering time of the pollen exporters that have access to resident mates differs by up to 4 weeks from the mean in the exporters’ natal population. The data from these three populations suggest that the bias in gene flow for flowering time cuts the impact on the resident population by as much as half. This implies that when selection is divergent between populations, migrants with the highest mating success tend to be resident‐like in their flowering times, and so, fewer maladaptive alleles will be introduced into the locally adapting gene pool.  相似文献   

17.
Hendry AP  Day T 《Molecular ecology》2005,14(4):901-916
Many populations are composed of a mixture of individuals that reproduce at different times, and these times are often heritable. Under these conditions, gene flow should be limited between early and late reproducers, even within populations having a unimodal temporal distribution of reproductive activity. This temporal restriction on gene flow might be called "isolation by time" (IBT) to acknowledge its analogy with isolation by distance (IBD). IBD and IBT are not exactly equivalent, however, owing to differences between dispersal in space and dispersal in time. We review empirical studies of natural populations that provide evidence for IBT based on heritabilities of reproductive time and on molecular genetic differences associated with reproductive time. When IBT is present, variation in selection through the reproductive season may lead to adaptive temporal variation in phenotypic traits [adaptation by time (ABT)]. We introduce a novel theoretical model that shows how ABT increases as (i) selection on the trait increases; (ii) environmental influences on reproductive time decrease; (iii) the heritability of reproductive time increases; and (iv) the temporal distribution of reproductive activity becomes increasingly uniform. We then review empirical studies of natural populations that provide evidence for ABT by documenting adaptive temporal clines in phenotypic traits. The best evidence for IBT and ABT currently comes from salmonid fishes and flowering plants, but we expect that future work will show these processes are more widespread.  相似文献   

18.
Plants must precisely time flowering to capitalize on favorable conditions. Although we know a great deal about the genetic basis of flowering phenology in model species under controlled conditions, the genetic architecture of this ecologically important trait is poorly understood in nonmodel organisms. Here, we evaluated the transition from vegetative growth to flowering in Boechera stricta, a perennial relative of Arabidopsis thaliana. We examined flowering time QTLs using 7920 recombinant inbred individuals, across seven laboratory and field environments differing in vernalization, temperature, and photoperiod. Genetic and environmental factors strongly influenced the transition to reproduction. We found directional selection for earlier flowering in the field. In the growth chamber experiment, longer winters accelerated flowering, whereas elevated ambient temperatures delayed flowering. Our analyses identified one large effect QTL (nFT), which influenced flowering time in the laboratory and the probability of flowering in the field. In Montana, homozygotes for the native allele at nFT showed a selective advantage of 6.6%. Nevertheless, we found relatively low correlations between flowering times in the field and the growth chambers. Additionally, we detected flowering-related QTLs in the field that were absent across the full range of laboratory conditions, thus emphasizing the need to conduct experiments in natural environments.  相似文献   

19.
为了研究植物生长季内开花时间对花特征表型选择的影响,我们以青藏高原东缘高寒草地的毛茛状金莲花Trollius ranunculoides)为实验材料,在生长季内不同开花时间(花前期、花末期)测定花特征,观察访花昆虫的类群和访花频率,生长季结束后收集种子.根据昆虫访花的喜好和季节内类群与访花频率的变化,分析了不同开花时间毛茛状金莲花的花特征与昆虫的选择;并用种子产量表示雌性适合度,估计了毛茛状金莲花的花特征在不同开花时间所受的表型选择.结果表明:不同花期植物的花特征有显著差异,相应的访花昆虫的类群和频率也存在差异,不同类群昆虫访花喜好也不一样.蜂喜好花瓣和花萼较宽、花茎短和花茎数少的个体,这正符合花前期的特征,因而蜂的访花频率在花前期较高;蝇对花特征没有明显的偏好.而通过雌性适合度估计毛茛状金莲花花特征所受的表型选择则是:花前期,花茎较长和花茎数多的植株适合度大;花末期,花茎数多的植株适合度大.我们的研究表明:在植物生长季,花期的分化伴随着传粉昆虫活动的变化.不同花期,访花昆虫的变化可能对植物花特征的分化起了至关重要的作用.但是访花昆虫对花特征的选择与通过雌性适合度估计植物受到的选择不尽相同,这可能是由于其他因素造成的.  相似文献   

20.
Abstract. Quantitative genetics theory provides a framework that predicts the effects of selection on a phenotype consisting of a suite of complex traits. However, the ability of existing theory to reconstruct the history of selection or to predict the future trajectory of evolution depends upon the evolutionary dynamics of the genetic variance-covariance matrix (G-matrix). Thus, the central focus of the emerging field of comparative quantitative genetics is the evolution of the G-matrix. Existing analytical theory reveals little about the dynamics of G, because the problem is too complex to be mathematically tractable. As a first step toward a predictive theory of G-matrix evolution, our goal was to use stochastic computer models to investigate factors that might contribute to the stability of G over evolutionary time. We were concerned with the relatively simple case of two quantitative traits in a population experiencing stabilizing selection, pleiotropic mutation, and random genetic drift. Our results show that G-matrix stability is enhanced by strong correlational selection and large effective population size. In addition, the nature of mutations at pleiotropic loci can dramatically influence stability of G. In particular, when a mutation at a single locus simultaneously changes the value of the two traits (due to pleiotropy) and these effects are correlated, mutation can generate extreme stability of G. Thus, the central message of our study is that the empirical question regarding G-matrix stability is not necessarily a general question of whether G is stable across various taxonomic levels. Rather, we should expect the G-matrix to be extremely stable for some suites of characters and unstable for others over similar spans of evolutionary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号