首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may also lead to inflammatory and fibrotic conditions (such as renal and pulmonary fibrosis). Therefore identification of the molecular events underlying wound repair is essential to develop new effective treatments in support to patients and the wound care sector.Recent advances in the understating of the physiological functions of tissue transglutaminase a multi functional protein cross-linking enzyme which stabilises tissues have demonstrated that its biological activities interrelate with wound healing phases at multiple levels. This review describes our view of the function of tissue transglutaminase in wound repair under normal and pathological situations and highlights its potential as a strategic therapeutic target in the development of new treatments to improve wound healing and prevent scarring.  相似文献   

2.
Skin fibrosis is classically seen as the consequence of chronic inflammation and altered healing response that is characterized by the differentiation of fibroblasts into secretory myofibroblasts and accumulation of connective tissue. Although fibrosis severely affects organ function and causes esthetic defects, no effective therapy is currently available to attenuate the fibrogenic process probably because the fibrogenic process is more complex than previously thought. Indeed, it might involve several interacting and mutually dependent cell types (fibroblasts, keratinocytes, endothelial cells, inflammatory cells), numerous paracrine factors, bio-active molecules and micro-environmental stimuli (growth factors, vasoactive peptides, balance between pro- and anti-inflammatory cytokines, coagulation system, reactive oxygen species, extracellular matrix...). In this perspective, the traditional approach that model individual cell response in simple cell culture system is probably inadequate and too simplistic. This article reviews the new models used to study skin fibrosis in vitro, in organotypic culture systems and in vivo and examines how these different models might be used to identify new molecular pathways involved in fibrogenesis. The monolayer cultures allow the study of fibrogenic signals induced by a single factor on a single cell type. Isolation of cells from fibrotic tissue allows to define the fibrogenic differentiation acquired in vivo. The organotypic models allow cell to cell and cell to matrix interaction and the experimental models in pigs and mice allowed studies in integrated physiological systems. These various and complementary models would also provide new tools to develop and test new drugs and treatments.  相似文献   

3.
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.  相似文献   

4.
5.
Pulmonary fibrosis is a common response to various insults or injuries to the lung. Although there are various initiating factors or causes, the terminal stages are characterized by proliferation and progressive accumulation of connective tissue replacing normal functional parenchyma. The pathogenesis of pulmonary fibrosis includes endothelial and epithelial cell injury, production of inflammatory cells and their mediators, and fibroblast activation. Conventional therapy consisting of glucocorticoids or cytotoxic drugs is usually ineffective in preventing progression of the disease. Further understanding of the molecular mechanisms of endothelial and epithelial cell injury, inflammatory reaction, fibroblast proliferation, collagen deposition and lung repair, should lead to the development of effective treatments against pulmonary fibrosis. Accordingly, this review summarizes recent progress made in understanding the molecular mechanisms of pulmonary fibrosis. A detailed discussion is presented regarding each of the potential new therapies which have emerged from the animal models of pulmonary fibrosis and which have been developed through advances in cellular and molecular biology.  相似文献   

6.
Gene therapy for tissue regeneration   总被引:6,自引:0,他引:6  
Tissue repair and regeneration are the normal biological responses of many different tissues in the body to injury. During the healing process, profound changes occur in cell composition and extracellular matrix (ECM) formation. Fibroblasts and equivalent reparative cells migrate to the wounded area and subsequently proliferate. These cells and reparative cells from the surrounding tissue are responsible for the rapid repair which results in tissue regeneration. Growth factors, one of which is transforming growth factor-beta (TGF-beta), stimulate fibroblasts and smooth muscle cells to proliferate and synthesize ECM proteins. This process of early repair provides a rapid way to restore new tissue and mechanical integrity. This early tissue repair process is normally followed by involution, which requires the production and activation of proteases, tissue maturation and remodeling, reorganization and finally regeneration. Alternately, failure to replace the critical components of the ECM, including elastin and basement membrane, results in abnormal regeneration of the epithelial cell layer. Although remodeling should occur during healing, provisional repair may be followed by excessive synthesis and deposition of collagen, which results in irreversible fibrosis and scarring. This excessive fibrosis which occurs in aberrant healing is at least in part mediated by persistent TGF-beta. Because of the central role of collagen in the wound healing process, the pharmacological control of collagen synthesis has been of paramount importance as a possible way to abrogate aberrant healing and prevent irreversible fibrosis. Fibrosis is an abnormal response to tissue injury.  相似文献   

7.
Chronic fibroproliferative diseases are an important cause of morbidity and mortality in the world. Fibrotic diseases occur in a large variety of vital organs, and the process of fibrosis seems common to all tissues. In all of fibrotic reactions, the underlying cellular and molecular mechanisms involve leukocyte infiltration, the persistence of inflammation in the tissue, and the proliferation of cells with a myofibroblast phenotype. The different cell types participating to this process sustain production of growth factors, proteolytic enzymes, angiogenic factors, and fibrogenic cytokines, which together stimulate the deposition of connective tissue elements that progressively destroy and remodel normal tissue architecture. This review focuses on the comparison of two, major, chronic fibroproliferative diseases: the myelofibrosis which develops in bone marrow, a "fluid" tissue producing circulating haematopoietic cells, and liver fibrosis, which demonstrates all the features of solid tissue damage. We discuss the etiology and histological quantification of each type of fibrosis, the implication of cell partners, cytokines and growth factors, animal models developed to study fibrosis, and antifibrotic therapies for each of these two fibroproliferative disease models.  相似文献   

8.
The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non‐healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross‐talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The causes of fibrosis, or the inappropriate wound healing, that follows chronic intestinal inflammation are not well defined and likely involve the contributions of multiple cellular mechanisms. As other articles in this series confirm, inflammatory cytokines clearly play a role in driving cell differentiation to the myofibroblast phenotype, promoting proliferation and extracellular matrix deposition that are characteristic of fibrotic tissue. However, controlling the balance of cytokines produced and process of myofibroblast differentiation appears to be more complex. This review considers ways in which hyaluronan, an extracellular matrix component that is remodeled during the progression of colitis, may provide indirect as well as direct cues that influence the balancing act of intestinal wound healing.  相似文献   

10.
The link between inflammatory microenvironment and cancer emerged in the last years as a decisive factor in the induction of the pathological epithelial–mesenchymal transition (EMT). The EMT induces changes of cell states converting the epithelial cells to mesenchymal cells when this program is fully executed and EMT has emerged as a central driver of tumor malignancy. Cellular pathways activated by chronic inflammation brought about by chronic infections, by immune-mediated diseases, or by dysregulated wound healing at sites of repetitive tissue injury, constitute risk factors or initial cell transformation and for cancer progression. EMT and its intermediate states have recently been identified as crucial inducers of organ fibrosis, inflammation and tumor progression. In this review, we discuss the current state-of-the-art and latest findings regarding the link between EMT, inflammation, fibrosis and cancer, highlighting the most recent data on EMT-dependent tissue fibrosis during chronic inflammatory salivary glands conditions and salivary glands tumors.  相似文献   

11.
Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing "pericyte-like" characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed.  相似文献   

12.
Adipose tissue has been under focus in the last decade and pivotal concepts have emerged from the studies of its complex biology. Low-grade inflammation both at the systemic level and in adipose tissue itself characterizes obesity. Among the different cell types contributing to inflammation, this review focuses on the mechanisms and consequences of macrophage accumulation in obese adipose tissue. Mechanisms for monocyte recruitment to adipose tissue, and how macrophages' phenotypes are modified in this environment in response to increasing fat mass, are considered. We review recent studies addressing the complex and versatile phenotype of adipose tissue macrophages that contribute to inflammatory and metabolic alterations, but could also help to maintain adipose tissue homeostasis in the setting of obesity both in mouse and human situations. A newly discovered consequence of adipose tissue inflammation is fibrosis. Whether macrophages and/or other immune cells exert a pro-fibrotic effect in adipose tissue is still unclear. This wealth of new information will hopefully help to design new ways to control adipose tissue inflammation and its deleterious sequels.  相似文献   

13.
Interleukin-6 is a classic pro-inflammatory cytokine needed to mount an effective immune response. It is secreted by a wide array of cell types, however, its target cells are more restricted, due to the fact that very few cells, except lymphocytes and hepatocytes, express the functional membrane IL-6 receptor. This therefore limits the amount of cells that can respond to IL-6. Transsignalling, the shedding of the membrane bound form of the IL-6 receptor (sIL-6R) into the local microenvironment, greatly increases the range of cells that can respond e.g. as part of a wound healing response necessary to restore the homeostatic balance. Therefore, tight regulation of IL-6 signalling must occur to stop an inappropriate wound healing response occurring. This review focusses on the role of IL-6 in inflammation and fibrosing conditions, with a particular emphasis on systemic sclerosis (SSc), a chronic autoimmune disease in which a classical hallmark of fibrosis occurs. This fibrosis, in particular the skin and internal organs, leads to contractures and internal organ failure respectively with potential fatal consequences. In this review we will discuss the biology of IL-6 in the context of fibrosing conditions such as SSc and argue why molecular targeting of IL-6 is a promising therapeutic target.  相似文献   

14.
The cellular mediators of intestinal fibrosis and the relationship between fibrosis and normal repair are not understood. Identification of the types of intestinal mesenchymal cells that produce collagen during normal healing and fibrosis is vital for elucidating the answers to these questions. Acute injury may cause normal mesenchymal cells to convert to a fibrogenic phenotype that is not maintained during normal healing but may lead to fibrosis when inappropriately sustained. Proliferation of normal or fibrogenic mesenchymal cells may lead to muscularis overgrowth associated with fibrosis. The presence of increased numbers of vimentin-positive cells within fibrotic, hypertrophied muscularis in Crohn's disease suggests that changes in mesenchymal cell phenotype and number may indeed be associated with fibrosis. Fibrosis is induced in rats by peptidoglycan polysaccharides or trinitrobenzene sulfonic acid-ethanol administration, but inducing fibrosis in mice has been technically challenging. The development of current mouse models of colitis, such as dextran sodium sulfate or trinitrobenzene sulfonic acid-ethanol administration, into models of fibrosis will allow us to use genetic manipulation to study molecular mediators of fibrosis.  相似文献   

15.
Fibrosis or scarring of diverse organs and tissues is considered as a pathologic consequence of a chronically altered wound healing response which is tightly linked to inflammation and angiogenesis. The recruitment of immune cells, local proliferation of fibroblasts and the consecutive accumulation of extracellular matrix proteins are common pathophysiological hallmarks of tissue fibrosis, irrespective of the organ involved. Chemokines, a family of chemotactic cytokines, appear to be central mediators of the initiation as well as progression of these biological processes. Traditionally chemokines have only been considered to play a critical role in orchestrating the influx of immune cells to sites of tissue injury. However, within the last years, further aspects of chemokine biology including fibroblast activation and angiogenesis have been deciphered in tissue fibrosis of many different organs. Interestingly, certain chemokines appear to mediate common effects in liver, kidney, lung, and skin of various animal models, while others mediate tissue specific effects. These aspects have to be kept in mind when extrapolating data of animal studies to early human trials. Nevertheless, the further understanding of chemokine effects in tissue fibrosis might be an attractive approach for identifying novel therapeutic targets in chronic organ damage associated with high morbidity and mortality. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

16.
Re-establishing tissue homoeostasis in response to injury requires infiltration of inflammatory cells and activation of resident stem cells. However, full tissue recovery also requires that the inflammation is resolved. While it is known that disturbing the interactions between inflammatory cells and tissue resident cells prevents successful healing, the molecular mechanisms underlying the paracrine interactions between these cell types are practically unknown. Here, and in a recent study, we provide mechanistic evidence that macrophages control stem cell-dependent tissue repair. In particular, we found that the temporal spacing of the pro- to anti-inflammatory macrophage polarization switch is controlled by the balance of p38 MAPK (termed here p38) and the MAPK phosphatase MKP-1 during the muscle healing process. Moreover, we demonstrate a new function for MKP-1-regulated p38 signaling in deactivating macrophages during inflammation resolution after injury. Specifically, at advanced stages of regeneration, MKP-1 loss caused an unscheduled “exhaustion-like” state in muscle macrophages, in which neither pro- nor anti-inflammatory cytokines are expressed despite persistent tissue damage, leading to dysregulated reparation by the tissue stem cells. Mechanistically, we demonstrate that p38 and MKP-1 control the AKT pathway through a miR-21-dependent PTEN regulation. Importantly, both genetic and pharmacological interference with the individual components of this pathway restored inflammation-dependent tissue homeostasis in MKP-1-deficient mice and delayed inflammation resolution and tissue repair dysregulation in wild-type mice. Because the process of tolerance to bacterial infection involves a progressive attenuation of pro-inflammatory gene expression, we discuss here the potential similarities between the mechanisms underlying inflammation resolution during tissue repair and those controlling endotoxin tolerance.  相似文献   

17.
Gap junctional communication in tissue inflammation and repair   总被引:9,自引:0,他引:9  
Local injury induces a complex orchestrated response to stimulate healing of injured tissues, cellular regeneration and phagocytosis. Practically, inflammation is defined as a defense process whereby fluid and white blood cells accumulate at a site of injury. The balance of cytokines, chemokines, and growth factors is likely to play a key role in regulating important cell functions such as migration, proliferation, and matrix synthesis during the process of inflammation. Hence, the initiation, maintenance, and resolution of innate responses depend upon cellular communication. A process similar to tissue repair and subsequent scarring is found in a variety of fibrotic diseases. This may occur in a single organ such as liver, kidneys, pancreas, lung, skin, and heart, but fibrosis may also have a more generalized distribution such as in atherosclerosis. The purpose of this review is to summarize recent advances on the contribution of gap junction-mediated intercellular communication in the modulation of the inflammatory response and tissue repair.  相似文献   

18.
A recent review article suggested that idiopathic pulmonary fibrosis (IPF) is a disease that is associated more with abnormal wound healing than with inflammation. Data derived from transgenic and gene transfer rodent models suggest that lung inflammation may be a necessary but insufficient component of IPF, and that at some point in the natural history of the disease IPF becomes no longer dependent on the inflammatory response for propagation. Altered microenvironment and involvement of epithelial cell/mesenchymal cell interaction are the most likely contributors to the pathogenesis of this chronic progressive disorder.  相似文献   

19.
Local injury induces a complex orchestrated response to stimulate healing of injured tissues, cellular regeneration and phagocytosis. Practically, inflammation is defined as a defense process whereby fluid and white blood cells accumulate at a site of injury. The balance of cytokines, chemokines, and growth factors is likely to play a key role in regulating important cell functions such as migration, proliferation, and matrix synthesis during the process of inflammation. Hence, the initiation, maintenance, and resolution of innate responses depend upon cellular communication. A process similar to tissue repair and subsequent scarring is found in a variety of fibrotic diseases. This may occur in a single organ such as liver, kidneys, pancreas, lung, skin, and heart, but fibrosis may also have a more generalized distribution such as in atherosclerosis. The purpose of this review is to summarize recent advances on the contribution of gap junction-mediated intercellular communication in the modulation of the inflammatory response and tissue repair.  相似文献   

20.
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号