首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Inohara  L Ding  S Chen  G Nú?ez 《The EMBO journal》1997,16(7):1686-1694
Programmed cell death is essential in organ development and tissue homeostasis and its deregulation is associated with the development of several diseases in mice and humans. The precise mechanisms that control cell death have not been elucidated fully, but it is well established that this form of cellular demise is regulated by a genetic program which is activated in the dying cell. Here we report the identification, cloning and characterization of harakiri, a novel gene that regulates apoptosis. The product of harakiri, Hrk, physically interacts with the death-repressor proteins Bcl-2 and Bcl-X(L), but not with death-promoting homologs, Bax or Bak. Hrk lacks conserved BH1 and BH2 regions and significant homology to Bcl-2 family members or any other protein, except for a stretch of eight amino acids that exhibits high homology with BH3 regions. Expression of Hrk induces cell death which is inhibited by Bcl-2 and Bcl-X(L). Deletion of 16 amino acids including the conserved BH3 region abolished the ability of Hrk to interact with Bcl-2 and Bcl-X(L) in mammalian cells. Moreover, the killing activity of this mutant form of Hrk (Hrk deltaBH3) was eliminated or dramatically reduced, suggesting that Hrk activates cell death at least in part by interacting with and inhibiting the protection afforded by Bcl-2 and Bcl-X(L). Because Hrk lacks conserved BH1 and BH2 domains that define Bcl-2 family members, we propose that Hrk and Bik/Nbk, another BH3-containing protein that activates apoptosis, represent a novel class of proteins that regulate apoptosis by interacting selectively with survival-promoting Bcl-2 and Bcl-X(L).  相似文献   

2.
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.  相似文献   

3.
The Bcl-2 family in autoimmune and degenerative disorders   总被引:1,自引:0,他引:1  
Members of the Bcl-2 family are essential regulators of programmed cell death and thus play a major role in the development and function of many tissues. The balance between pro-survival and pro-apoptotic members of the family decides whether a cell will live or die. This mechanism allows organisms to get rid of cells that are no longer needed or have become dangerous. Deregulation of apoptosis is a major contributing factor in the development of many diseases. A deeper understanding of how the Bcl-2 family proteins orchestrate death in normal and pathologic conditions is thus relevant not only for disease etiology, but also to try to prevent these various disorders. Experiments with transgenic and gene-ablated mice have helped elucidate the function of the different members of the Bcl-2 family and their physiological roles. The present review highlights the role of Bcl-2 family members in autoimmune and degenerative disorders, with a particular focus on the mouse models that have been used to study their function.  相似文献   

4.
Roscovitine (Rosc) and purvalanol (Pur) are competitive inhibitors of cyclin-dependent kinases (CDKs) by targeting their ATP-binding pockets. Both drugs are shown to be effective to decrease cell viability and dysregulate the ratio of pro- and anti-apoptotic Bcl-2 family members, which finally led to apoptotic cell death in different cancer cell lines in vitro. It was well established that Bcl-2 family members have distinct roles in the regulation of other cellular processes such as endoplasmic reticulum (ER) stress. The induction of ER stress has been shown to play critical role in cell death/survival decision via autophagy or apoptosis. In this study, our aim was to investigate the molecular targets of CDK inhibitors on ER stress mechanism related to distinct cell death types in time-dependent manner in HeLa cervical cancer cells. Our results showed that Rosc and Pur decreased the cell viability, cell growth and colony formation, induced ER stress-mediated autophagy or apoptosis in time-dependent manner. Thus, we conclude that exposure of cells to CDK inhibitors induces unfolded protein response and ER stress leading to autophagy and apoptosis processes in HeLa cervical cancer cells.  相似文献   

5.
Bim (Bcl-2-interacting mediator of cell death) is a member of the BH3 domain-only subgroup of Bcl-2 family members, for which three splice variants have been described. Bim is expressed in many healthy cell types, where it is maintained in an inactive conformation through binding to the microtubule-associated dynein motor complex. Upon certain apoptotic stimuli, Bim is released from microtubules and mediates caspase-dependent apoptosis through a mechanism that is still unclear. Here, we have identified and characterized novel splice variants of human Bim mRNA. In particular, we show that a newly discovered, small protein isoform, BimAD, is also able to induce apoptosis strongly in several human cell lines. BimAD and the previously characterized isoform BimS are shown to be capable of heterodimerizing in vivo with both death antagonists (Bcl-2 and Bcl-X(L)) and death agonists (Bax). Mutants of BimAD that bind to Bax but not to Bcl-2 still promote apoptosis, indicating that Bim can regulate apoptosis through direct activation of the Bax-mediated cell death pathway without interaction with antiapoptotic Bcl-2 family members. Furthermore, we have shown that the interaction of the BimS and BimAD isoforms with Bax leads to a conformational change in this protein analogous to that triggered by the BH3-only protein Bid.  相似文献   

6.
Control of mitochondrial permeability by Bcl-2 family members   总被引:32,自引:0,他引:32  
Programmed cell death (apoptosis) is regulated by the Bcl-2 family of proteins. Although it remains unclear how these family members control apoptosis, they clearly have the capacity to regulate the permeability of intracellular membranes to ions and proteins. Proapoptotic members of the Bcl-2 family, especially Bax and Bid, have been extensively analyzed for the ability to form channels in membranes and to regulate preexisting channels. Anti-apoptotic members of the family tend to have the opposing effects on membrane channel formation. The molecular mechanisms of the different models for the permeabilization of membranes by the Bcl-2 family members and the regulation of Bcl-2 family member subcellular localizations are discussed.  相似文献   

7.
The role of Bcl-2 family members in tumorigenesis   总被引:38,自引:0,他引:38  
The Bcl-2 family consists of about 20 homologues of important pro- and anti-apoptotic regulators of programmed cell death. The established mode of function of the individual members is to either preserve or disturb mitochondrial integrity, thereby inducing or preventing release of apoptogenic factors like Cytochrome c (Cyt c) from mitochondria. Recent findings also indicate further Bcl-2-controlled mitochondria-independent apoptosis pathways. Bcl-2 represents the founding member of the new and growing class of cell death inhibiting oncoproteins. In this review, we try to briefly summarize current models of Bcl-2 family function and to outline the work demonstrating the influence of deregulated Bcl-2 family member expression on tumorigenesis and cancer therapy. Since several Bcl-2 homologues, in addition to influencing apoptotic behaviour, also impinge on cell cycle progression, we discuss possible implications of this additional role for the expression of Bcl-2 family members in tumor cells.  相似文献   

8.
Bcl-2 family members, like the structurally similar translocation domain of diphtheria toxin, can form ion-selective channels and larger-diameter pores in artificial lipid bilayers. Recent studies show how Bcl-2 family members change topology in membranes during apoptosis and that these different states may either promote or inhibit apoptosis. Binding of BH3-only proteins alters the subcellular localization and/or membrane topology and probably affects the channel formation of Bcl-2, Bcl-xL and Bcl-w. However, it remains unclear how the pore-forming activity functions in cells to regulate mitochondrial membrane permeabilization and cell death. Bcl-2 family members in flies and worms regulate apoptosis by mechanisms seemingly unrelated to membrane permeabilization, leaving a unifying model for the biochemical activity of this protein family unknown. Work linking Bcl-2 family members to mitochondrial morphogenesis in worms and mammals suggests some common functions of Bcl-2 family proteins may exist.  相似文献   

9.
Programmed cell death or apoptosis is a crucial process for normal embryonic development and homeostasis. Apoptosis is known to be coupled to multiple signalling pathways. Identification of critical points in the regulation of apoptosis is of major interest both for the understanding of control of cell fate and for the discovery of new pharmacological targets, particularly in oncology. Indeed, defects in the execution of apoptosis are known to participate in tumour initiation and progression as well as in chemoresistance. The Bcl-2 family members constitute essential intracellular players in the apoptotic machinery. Those proteins are either pro or anti-apoptotic, they interact with each other to regulate apoptosis. Inhibiting the heterodimerisation between pro- and anti-apoptotic members is sufficient to promote apoptosis in mammalian cells. Small molecules, antagonists or peptidomimetics inhibiting this heterodimerisation, represent a therapeutic prototype targeting the apoptotic cascade. They induce cell death by activating directly the mitochondrial apoptotic pathway. Considerable evidence indicate that such Bcl-2 antagonists could be useful drugs to induce apoptosis preferentially in neoplastic cells.  相似文献   

10.
The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different ‘modes'' by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.  相似文献   

11.
Although expression of Bcl-2 has been shown to prevent apoptosis under many circumstances, there are several systems in which Bcl-2 fails to promote cell survival. We have previously reported that Bcl-2 and Bcl-x(L) display differential ability to protect WEHI-231 cells from multiple inducers of apoptosis. A possible explanation for this paradox was provided by the discovery of Bax. Bax is a Bcl-2-related protein which can inhibit the ability of Bcl-2 to enhance the survival of growth factor-dependent cell lines in the absence of growth factor. Consistent with the possibility that Bcl-2 function in WEHI-231 cells is inhibited by Bax, WEHI-231 cells were found to express a high level of Bax. To directly test the effects of Bax expression on Bcl-x(L) function, FL5.12 cells were transfected with both genes. Although Bax overexpression can inhibit Bcl-2 from prolonging cell survival upon growth factor withdrawal, Bax overexpression did not inhibit Bcl-x(L) from preventing apoptosis in this cell line. Although Bcl-2 and Bcl-x(L) were both found to be able to form heterodimers with Bax, the majority of Bax in both cases was not complexed to a partner. Our data suggest that Bcl-x(L) does not function by simply preventing the formation of Bax homodimers which promote cell death. Instead Bax appears to display selectivity in its ability to inhibit Bcl-2 but not Bcl-x(L) from prolonging survival. Furthermore, our data suggest that the abilities of Bcl-2 and Bcl-x(L) to promote cell survival are not identical and can be independently regulated within a cell. Regulation of a cell's apoptotic threshold is likely to result from a complex set of interactions among Bcl-2 family members and other, as yet uncharacterised, regulators of apoptosis.  相似文献   

12.
Emerging evidence suggests that apoptosis regulators and executioners may control cell fate, without involving cell death per se. Indeed, several conserved elements of apoptosis are integral components of terminal differentiation, which must be restrictively activated to assure differentiation efficiency, and carefully regulated to avoid cell loss. A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation, as an alternative to cell death will surely make stem cells more suitable for neuro-replacement therapies. In this review, we summarize recent studies on the mechanisms underlying the non-apoptotic function of p53, caspases, and Bcl-2 family members during neural differentiation. In addition, we discuss how apoptosis-regulatory proteins control the decision between differentiation, self-renewal, and cell death in neural stem cells, and how activity is restrained to prevent cell loss.  相似文献   

13.
14.
Spontaneous immunity against Bcl-xL in cancer patients   总被引:4,自引:0,他引:4  
It is well-established that peptide epitopes derived from human tumor-associated Ags can be recognized by CTL in the context of the MHC molecule. However, the vast majority of Ags described are not vital for survival and growth of the tumor cells, and immunoselection of Ag-loss variants during immunotherapy has been demonstrated in several cases. Malfunctions in death pathways observed in human cancers are often due to overexpression of antiapoptotic proteins in the Bcl-2 protein family, i.e., Bcl-2, Mcl-1, and Bcl-xL. These antiapoptotic proteins are implicated in cancer development, tumor progression, and drug resistance. The general overexpression of the antiapoptotic members of the Bcl-2 family in cancer and the fact that down-regulation or loss of expression of these proteins as a means of immune escape would impair sustained tumor growth makes them very attractive targets for anticancer immunotherapy. Recently, we identified spontaneous T cell responses against Bcl-2- and Mcl-1-derived peptides in patients suffering from cancers of different origin. In this study, we demonstrate that Bcl-xL is a target for T cell recognition in cancer patients. Thus, we describe spontaneous HLA-A2-restricted cytotoxic T cell responses against peptide epitopes derived from Bcl-xL by means of ELISPOT and flow cytometry stainings, whereas no responses were detected against any of the Bcl-xL epitopes in any healthy controls. Moreover, Bcl-xL-specific T cells are cytotoxic against HLA-matched cancer cells of different origin. Thus, cellular immune responses against apoptosis inhibitors like the Bcl-2 family proteins appear to represent a general feature in cancer.  相似文献   

15.
Although there is no consensus regarding the normal function of the prion protein, increasing evidence points towards a role in cellular protection against cell death. We have previously shown that prion protein is a potent inhibitor of Bax-induced apoptosis in human primary neurons and in the breast carcinoma MCF-7 cells. Here, we used the yeast Saccharomyces cerevisiae to investigate if the neuroprotective function of prion protein requires other members of the Bcl-2 family given that S. cerevisiae lacks Bcl-2 genes but undergoes a mitochondrial-dependent apoptotic cell death upon exogenous expression of Bax protein. We show that Bax induces cell death and growth inhibition in S. cerevisiae. Prion protein prevents Bax-mediated cell death. Prion protein overcomes Bax-mediated growth arrest in S phase but cannot overcome population growth inhibition because the cells then accumulate in G(2)/M phase. We conclude that prion protein does not require other Bcl-2 family proteins to protect against Bax-mediated cell death.  相似文献   

16.
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.  相似文献   

17.
Bcl-2 protein family members function either to promote or inhibit programmed cell death. Bcl-2, typically an inhibitor of apoptosis, has also been demonstrated to have pro-apoptotic activity (Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Science 278, 1966-1968). The pro-apoptotic activity has been attributed to the cleavage of Bcl-2 by caspase-3, which converts Bcl-2 to a pro-apoptotic molecule. Bcl-2 is a membrane protein that is localized in the endoplasmic reticulum (ER) membrane, the outer mitochondrial membrane, and the nuclear envelope. Here, we demonstrate that transient expression of Bcl-2 at levels comparable to those found in stably transfected cells induces apoptosis in human embryonic kidney 293 cells and in the human breast cell line MDA-MB-468 cells. Furthermore, we have targeted Bcl-2 specifically to either the ER or the outer mitochondrial membrane to test whether induction of apoptosis by Bcl-2 is dependent upon its localization within either of these membranes. Our findings indicate that Bcl-2 specifically targeted to the mitochondria induces cell death, whereas Bcl-2 that is targeted to the ER does not. The expression of Bcl-2 does result in its cleavage to a 20-kDa protein; however, mutation of the caspase-3 cleavage site (D34A) does not inhibit its ability to induce cell death. Additionally, we find that transiently expressed ER-targeted Bcl-2 inhibits cell death induced by Bax overexpression. In conclusion, the ability of Bcl-2 to promote apoptosis is associated with its localization at the mitochondria. Furthermore, the ability of ER-targeted Bcl-2 to protect against Bax-induced apoptosis suggests that the ER localization of Bcl-2 may play an important role in its protective function.  相似文献   

18.
19.
Regulation of the cell death program involves physical interactions between different members of the Bcl-2 family that either promote or suppress apoptosis. The Bcl-2 homolog, Bak, promotes apoptosis and binds anti-apoptotic family members including Bcl-2 and Bcl-xL. We have identified a domain in Bak that is both necessary and sufficient for cytotoxic activity and binding to Bcl-xL. Sequences similar to this domain were identified in Bax and Bip1, two other proteins that promote apoptosis and interact with Bcl-xL, and were likewise critical for their capacity to kill cells and bind Bcl-xL. Thus, the domain is of central importance in mediating the function of multiple cell death-regulatory proteins that interact with Bcl-2 family members.  相似文献   

20.
As with all metazoans, the fly makes extensive use of selective programmed cell death (PCD) to remove excess cells and properly sculpt developing tissues. Several core components of the cell death machinery have been identified in flies, including caspases and an Apaf-1 ortholog [1] [2] [3] [4]. One missing component has been a member of the Bcl-2 family of proteins, which act either pro- or anti-apoptotically as upstream regulatory proteins. Here, we report the identification of Bcl-2 family members in Drosophila - dBorg-1 (Drosophila Bcl-2 ortholog), also identified by Igaki et al. [5], and dBorg-2. Removal of dBorg-1 function during Drosophila embryonic development resulted in excess glial cells, demonstrating its pro-apoptotic function. In cell culture assays, dBorg-1 efficiently induced apoptosis but, remarkably, also demonstrated protective activity when death stimuli were introduced. Finally, ectopic expression of dBorg-1 in the eye led to subtle defects that were strongly potentiated by ultra violet (UV) irradiation, resulting in a dramatic loss of retinal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号